[1] Sharon YT, Safiya UN. Emotions, technology, and design[M]. American: Academic Press, 2016. [2] Mühl C, Allison B, Nijholt A, et al. A survey of affective brain computer interfaces: principles, state-of-the-art, and challenges[J]. Brain-Computer Interfaces, 2014, 1(2): 66-84. [3] James W. What is an emotion[J]. Mind, 1884, 9(34): 188-205. [4] Lange CG. The Emotions: A psychophysiological study[J]. The Emotions, 1885: 33-90. [5] Cannon WB. The James-Lange theory of emotions: a critical examination and an alternative theory[J]. The American Journal of Psychology, 1927, 39(1/4): 106-124. [6] Papez JW. A proposed mechanism of emotion[J]. Archives of Neurology and Psychiatry, 1937, 38(4): 725-743. [7] Maclean PD. Psychosomatic disease and the “Visceral Brain” recent developments bearing on the papez theory of emotion[J]. Psychosomatic Medicine, 1949, 11(6): 338-353. [8] Yin Z, Zhao M, Wang Y, et al. Recognition of emotions using multimodal physiological signals and an ensemble deep learning model[J]. Computer Methods and Programs in Biomedicine, 2017, 140: 93-110. [9] 贲晛烨, 杨明强, 张鹏, 等. 微表情自动识别综述[J]. 计算机辅助设计与图形学学报, 2014, 26(9): 1385-1395. Ben XY, Yang MQ, Zhang P, et al. Survey on automatic micro expression recognition methods[J]. Journal of Computer-Aided Design & Computer Graphics, 2014, 26(9): 1385-1395. [10] Kaur B, Singh D, Roy PP. EEG based emotion classification mechanism in BCI[J]. Procedia Computer Science, 2018, 132: 752-758. [11] Anderson K, McOwan PW. A real-time automated system for the recognition of human facial expressions[J]. IEEE Transactions on System, Man and Cybernetics, Part B: Cybernetics, 2006, 36(1): 96-105. [12] 缪裕青,邹巍,刘同来,等. 基于参数迁移和卷积循环神经网络的语音情感识别[J]. 计算机工程与应用, 2019, 55(10): 135-140, 198. Miao YQ, Zou W, Liu TL, et al. Speech emotion recognition model based on parameter transfer and convolutional recurrent neural network[J]. Computer Engineering and Applications, 2019, 55(10): 135-140, 198. [13] Picard RW, Vyzas E, Healey J. Toward machine emotional intelligence: analysis of affective physiological state[J]. IEEE Transactions on Pattern Analysis and Machined Intelligence, 2001, 23(10): 1175-1191. [14] Jie X, Cao R, Li L. Emotion recognition based on the sample entropy of EEG[J]. Bio-Medical Materials and Engineering, 2014, 24(1): 1185-1192. [15] Kaur B, Singh D, Roy PP. A novel framework of EEG-based user identification by analyzing music-listening behavior[J]. Multimedia Tools and Applications, 2017, 76(24): 25581-25602. [16] Saini R, Kaur B, Singh P, et al. Don’t just sign use brain too: A novel multimodal approach for user identification and verification[J]. Information Sciences, 2018, 430-431: 163-178. [17] Koelstra S, Mühl C, Soleymani M, et al. DEAP: A database for emotion analysis using physiological signals[J]. IEEE Transactions on Affective Computing, 2012, 3(1): 18-31. [18] Soleymani M, Lichtenauer J, Pun T, et al. A multimodal database for affect recognition and implicit tagging[J]. IEEE Transactions on Affective Computing, 2012, 3(1): 42-55. [19] Zheng WL, Lu BL. Investigating critical frequency bands and channels for EEG-based emotion recognition with deep neural networks[J]. IEEE Transactions on Autonomous Mental Development, 2015, 7(3): 162–175. [20] Lang PJ, Bradley MM, Cuthbert BN. International affective picture system (IAPS): Instruction manual and affective ratings, Technical Report A-8. Gainesville: The Center for Research in Psychophysiology, University of Florida, 2008. [21] Bradley MM, Lang PJ. International affective digitized sounds (IADS): Stimuli, instruction manual and affective ratings. Technical report B-2. Gainesville, FL: The Center for Research in Psychophysiology, University of Florida, 1999. [22] Dai YX, Wang X, Zhang PB, et al. Sparsity constrained differential evolution enabled feature-channel-sample hybrid selection for daily-life EEG emotion recognition[J]. Multimedia Tools and Applications, 2018, 77(17): 21967-21994. [23] Yu XY, Chum P, Sim KB. Analysis the effect of PCA for feature reduction in non-stationary EEG based motor imagery of BCI system[J]. Optik-International Journal for Light and Electron Optics, 2014, 125(3): 1498-1502. [24] Artoni F, Delorme A, Makeig S. Applying dimension reduction to EEG data by principal component analysis reduces the quality of its subsequent independent component decomposition[J]. NeuroImage, 2018, 175: 176-187. [25] Liang Z, Oba S, Ishii S. An unsupervised EEG decoding system for human emotion recognition[J]. Neural Networks, 2019, 116: 257-268. [26] Zhang Q, Lee M. A hierarchical positive and negative emotion understanding system based on integrated analysis of visual and brain signals[J]. Neurocomputing, 2010, 73(16-18): 3264-3272. [27] 聂聃, 王晓鞲, 段若男, 等. 基于脑电的情绪识别研究综述[J]. 中国生物医学工程学报, 2012, 31(4): 595-606. Nie D, Wang XW, Duan RN, et al. A survey on EEG based emotion recognition[J]. Chinese Journal of Biomedical Engineering, 2012, 31(4): 595-606. [28] Zouridakis G, Patidar U, Padhyen NS, et al. Spectral power of brain activity associated with emotion—a pilot MEG study[C]// Proceedings of the 17th International Conference on Bio-magnetism Advances in Biomagnetism-BIOMAG2010, IFMBE Proceedings. Dubrovnik, Croatia: Springer, 2010, 28(1): 354-357. [29] Xing BX, Zhang H, Zhang K, et al. Exploiting EEG signals and audiovisual feature fusion for video emotion recognition[J]. IEEE Access, 2019, 7: 59844-59861. [30] Wu N, Jiang H, Yang G. Emotion recognition based on physiological signals[J]. Advances in Brain Inspired Cognitive Systems, 2012, 7366: 311-320. [31] 裴一飞, 杨淑娟.运动想象脑电信号算法研究进展[J]. 北京生物医学工程, 2018, 37(2): 208-214. Pei YF, Yang SJ. Research progress on motor imagery EEG signals[J]. Beijing Biomedical Engineering, 2018, 37(2): 208-214. [32] 张迪, 万柏坤, 明东. 基于生理信号的情绪识别研究进展[J]. 生物医学工程学杂志, 2015, 32(1): 229-234. Zhang D, Wan BK, Ming D. Research progress on emotion recognition based on physiological signals[J].Journal of Biomedical Engineering, 2015, 32(1): 229-234. [33] 李立, 曹锐, 相洁. 脑电数据近似熵与样本熵特征对比研究[J]. 计算机工程与设计, 2014, 35( 3): 1021-1026. Li L, Cao R, Xiang J. Comparative study of approximate entropy and sample entropy based on characterization of EEG[J]. Computer Engineering and Design, 2014, 35(3): 1021-1026. [34] Konstantinidis EI, Frantzidis CA, Pappas C, et al. Real time emotion aware applications: a case study employing emotion evocative pictures and neuro-physiological sensing enhanced by graphic processor units[J]. Computer Methods and Programs in Biomedicine, 2012, 107(1): 16-27. [35] Liu Y, Sourina O, Nguyen MK. Real-time EEG-based emotion recognition and its applications[J]. Transactions on Computational Science XⅡ, 2011, 6670: 256-277. [36] 张冠华, 余旻婧, 陈果,等. 面向情绪识别的脑电特征研究综述[J]. 中国科学:信息科学, 2019, 49(9): 1097-1118. Zhang GH, Yu MJ, Chen G, et al. A review of EEG features for emotion recognition[J]. Scientia Sinica Informationis, 2019, 49(9): 1097-1118. [37] 王亚真, 张新峰, 胡广芹,等. 基于支持向量机的中医舌图像质量评价研究[J].北京生物医学工程, 2015, 34(6): 551-557. Wang YZ, Zhang XF, Hu GQ, et al. Study of tongue image quality assessment based on SVM in traditional Chinese medicine[J]. Beijing Biomedical Engineering, 2015, 34(6): 551-557. [38] Liu YJ, Yu MJ, Zhao GZ, et al. Real-time movie-induced discrete emotion recognition from EEG signals. IEEE Transactions on affective Computing, 2017, 99: 1-14. [39] Nie D, Wang XW, Shi LC, et al. EEG-based emotion recognition during watching movies[C]//5th International Conference on Neural Engineering. Cancun: IEEE Press, 2011: 667-670. [40] Estepp JR, Klosterman SL, Christensen JC. An assessment of non-stationarity in physiological cognitive state assessment using artificial neural networks[C]//Proceedings of International Conference of the IEEE Engineering in Medicine and Biology Society. Boston, Massachusetts: IEEE Press, 2011: 6552-6555. [41] 陈继华, 李岚, 钱坤喜. 基于多生理信号的情绪初步识别[J]. 生物医学工程研究, 2006, 25(3): 141-146. Chen JH, Li L, Qian KX. Emotion recognition by physiological signals[J]. Journal of Biomedical Engineering Research, 2006, 25(3): 141-146. [42] Tipping ME. Sparse Bayesian learning and the relevance vector machine[J]. Journal of Machine Learning Research, 2001, 1:211-244. [43] 李志文, 蔡先发, 韦佳, 等. 基于PCA和LDA方法的肿瘤基因表达谱数据分类[J].北京生物医学工程, 2014, 33(1): 47-51. Li ZW, Cai XF, Wei J, et al. Classification of cancer gene expression profile based on PCA and LDA[J]. Beijing Biomedical Engineering, 2014, 33(1): 47-51. [44] Agrafioti F, Hatzinakos D, Anderson A. ECG pattern analysis for emotion detection[J]. IEEE Transactions on Affective Computing, 2012, 3(1): 102-115. [45] Kaur B, Singh D, Roy PP. A novel framework of EEG-based user identification by analyzing music-listening behavior[J]. Multimedia Tools and Applications, 2017, 76(24): 25581-25602. [46] Zhang Y, Ji XM, Zhang SH. An approach to EEG-based emotion recognition using combined feature extraction method[J]. Neuroscience Letters, 2016, 633: 152-157. [47] 魏琛, 陈兰岚, 张傲. 基于集成卷积神经网络的脑电情感识别[J]. 华东理工大学学报(自然科学版), 2019, 45(4): 614-622. Wei C, Chen LL, Zhang A. Emotion recognition of EEG based on ensemble convolutional neural networks[J]. Journal of East China University of Science and Technology (Natural Science Edition), 2019, 45(4): 614-622. [48] Soleymani M, Lichtenauer J, Pun T, et al. A multimodal database for affect recognition and implicit tagging[J]. IEEE Transactions on Affective Computing, 2012, 3(1):42-55. [49] Taran S, Bajaj V. Emotion recognition from single-channel EEG signals using a two-stage correlation and instantaneous frequency-based filtering method[J]. Computer Methods and Programs in Biomedicine, 2019, 173: 157-165. [50] AbdelAal MA, Alsawy AA, Hefny HA. EEG-based emotion recognition using a wrapper-based feature selection method[C] // International Conference on Advanced Intelligent Systems and Informatics. Cairo, Egypt: AISI, 2018, 639: 247-256. [51] Gupta A, Sahu H, Nanecha N, et al. Enhancing text using emotion detected from EEG signals[J]. Journal of Grid Computing, 2019,17(2): 324-340. [52] Vijayan AE. EEG-based emotion recognition using statistical measures and auto-regressive modeling[C]// IEEE International Conference on Computational Intelligence & Communication Technology (CICT 2015). Ghaziabad, India:IEEE Press, 2015: 587-591. [53] Mehmood RM, Lee HJ. Towards emotion recognition of EEG brain signals using Hjorth parameters and SVM[J]. Advanced Science and Technology Letters, 2015, 91: 24-27. [54] Gupta V, Chopda MD, Pachori RB. Cross-subject emotion recognition using flexible analytic wavelet transform from EEG signals[J]. IEEE Sensors Journal, 2019, 19(6): 2266-2274. [55] Chen JX, Zhang PW, Mao ZJ, et al. Accurate EEG-based emotion recognition on combined features using deep convolutional neural networks[J]. IEEE Access, 2019, 7: 44317-44328. [56] Zhang T, Zheng W, Cui Z, et al. Spatial-temporal recurrent neural network for emotion recognition[J]. IEEE Transactions on Cybernetics, 2018, 49(3): 839-847.
|