设为首页 |  加入收藏
首页首页 期刊简介 消息通知 编委会 电子期刊 投稿须知 广告合作 联系我们
基于系统矩阵的磁粒子成像重构研究进展

Research progress on reconstruction for magnetic particle imaging based on system matrix

作者: 陈晓君  韩潇  王晓林李广飞  唐晓英 
单位:北京理工大学生命学院(北京100081)
关键词: 医学影像;  磁粒子成像;  系统矩阵;  重构;  正则化 
分类号:R318
出版年·卷·期(页码):2020·39·2(196-202)
摘要:

磁粒子成像(magnetic particle imaging, MPI)是一种新型、前沿的层析成像方式,对具有生物相容性的超顺磁纳米粒子进行浓度分布成像,具有高灵敏度、高分辨率、无辐射等特征。基于系统矩阵的MPI重构是MPI重构研究的重要分支,较X-空间(X-Space)法具有更精确的重建效果。本文简要介绍了MPI的成像及重构原理;重点阐述了基于系统矩阵的MPI重构研究现状,对比分析了系统矩阵的测量与模型构建方法,归纳总结了吉洪诺夫正则化、LASSO算法、非负的融合套索模型与联合重建法的优劣;最后针对公开的数据库提出合理的频率筛选、系统矩阵稀疏模型构建、正则化方法探索改进的几点研究建议,以期为MPI的重构研究提供一定的方法参考,更好地促进未来磁粒子成像在临床医学中的良好应用。

Magnetic particle imaging is an emerging and frontier tomographic imaging modality that determines the concentration of biocompatible superparamagnetic nanoparticles with high sensitivity, high spatial resolution and no radiation. MPI reconstruction based on system matrix is an important branch of MPI reconstruction research, and has more accurate reconstruction effect than X-Space method. This paper briefly introduces the imaging principle of MPI and its reconstruction theory, and focuses on the MPI reconstruction progress based on system matrix, analyzes and compares the different methods for system matrix construction of measurement and model, summarizes the advantages and disadvantages of Tikhonov regularization method, LASSO algorithm, non-negative fused lasso model and joint reconstruction method. Finally, the paper proposes certain research suggestions for the open database, such as reasonable frequency screening, system matrix sparse model and regularization improvement method, expecting that this review may provide a convenience for researchers in MPI reconstruction and promote the future application of MPI in clinical medicine.

参考文献:

[1] 刘丰伟,李汉军,张逸鹤,等.人工智能在医学影像诊断中的应用[J].北京生物医学工程,2019,38(2): 206-211.

Liu WF, Li HJ, Zhang YH, et al. Application of artificial intelligence in medical imaging diagnosis [J]. Beijing Biomedical Engineering, 2019, 38(2): 206-211.

[2] Gleich B, Weizenecker J. Tomographic imaging using the nonlinear response of magnetic particles [J]. Nature, 2005, 435(7046):1214-1217.

[3] Weizenecker J, Borgert J, Gleich B. A simulation study on the resolution and sensitivity of magnetic particle imaging[J]. Physics in Medicine and Biology, 2007, 52(21):6363-6374.

[4] Gleich B, Weizenecker J, Borgert J. Experimental results on fast 2D-encoded magnetic particle imaging[J]. Physics in Medicine and Biology, 2008, 53(6): N81-N84.

[5] Weizenecker J, Gleich B, Rahmer J, et al. Three-dimensional real-time in vivo magnetic particle imaging[J]. Physics in Medicine and Biology, 2009, 54(5): L1–L10.

[6] Panagiotopoulos N, Duschka RL, Ahlborg M, et al. Magnetic particle imaging: current developments and future directions[J]. International Journal of Nanomedicine, 2015, 10: 3097-3114.

[7] Arami H, Teeman E, Troksa A, et al. Tomographic magnetic particle imaging of cancer targeted nanoparticles[J]. Nanoscale, 2017, 9(47): 18723-18730.

[8] Rahmer J, Antonelli A, Sfara C, et al. Nanoparticle encapsulation in red blood cells enables blood-pool magnetic particle imaging hours after injection[J]. Physics in Medicine and Biology, 2013, 58(12): 3965-3977.

[9] Knopp T, Buzug TM. Magnetic particle imaging: an introduction to imaging principles and scanner instrumentation [M]. Berlin: Springer-Verlag Berlin Heidelberg, 2012.

[10] Knopp T, Sattel TF, Biederer S, et al. Model-based reconstruction for magnetic particle imaging[J]. IEEE Transactions on Medical Imaging, 2010, 29(1): 12-18.

[11] Goodwill PW, Conolly SM. Multidimensional X-space magnetic particle imaging[J]. IEEE Transactions on Medical Imaging, 2011, 30(9): 1581-1590.

[12] 吕龙龙. 一维磁粒子成像系统性能测试分析及其成像研究[D]. 西安:西安电子科技大学, 2014.

Lyu LL. One-dimensional magnetic particle imaging system performance analysis and ite imaging studies[D]. Xi’an: Xidian University, 2014.

[13] Rahmer J, Weizenecker J, Gleich B, et al. Analysis of a 3D system function measured for magnetic particle imaging[J]. IEEE Transactions on Medical Imaging, 2012, 31(6):1289-1299.

[14] Grafe K, Gladiss A, Bringout G, et al. 2D images recorded with a single-sided magnetic particle imaging scanner[J] IEEE Transactions on Medical Imaging, 2016, 35(4):1056-1065.

[15] 谢迪. 磁性粒子成像重建算法研究[D]. 武汉: 华中科技大学, 2013.

Xie D. Research on the reconstruction algorithm in magnetic particle imaging[D]. Wuhan: Huazhong University of Science&Technology, 2013.

[16] Szwargulski P, Moddel M, Gdaniec N, et al. Efficient joint image reconstruction of multi-patch data reusing a single system matrix in magnetic particle imaging[J]. IEEE Transactions on Medical Imaging, 2019, 38(4): 932–944.

[17] Knopp T, Biederer S, Sattel T, et al. Trajectory analysis for magnetic particle imaging[J]. Physics in Medicine and Biology, 2008, 54(2): 385-397.

[18] Weizenecker J, Gleich B, Borgert J. Magnetic particle imaging using a field free line[J]. Journal of Physics D: Applied Physics, 2008, 41(10): 105009.

[19] Schimiester L, Moddel M, Erb W, et al. Direct image reconstruction of lissajous-type magnetic particle imaging data using chebyshev-based matrix compression[J]. IEEE Transactions on Computational Imaging, 2017, 3(4): 671-681.

[20] 谢迪,张朴,程晶晶.基于磁性粒子成像技术的一维建模仿真研究[J].计算机仿真, 2013, 30(9): 410-414.

Xie D, Zhang P, Cheng JJ. Simulation research on one-dimensional magnetic particle imaging[J]. Computer Simulation, 2013, 30(9):410-414.

[21] Ferguson RM, Khandhar AP, Kemp SJ, et al. Magnetic particle imaging with tailored iron oxide nanoparticle tracers[J]. IEEE Transactions on Medical Imaging, 2015, 34(5): 1077–1084.

[22] Kluth T. Mathematical models for magnetic particle imaging[J]. Inverse Problems, 2018, 34(8): 1-27.

[23] Vogel P, Rückert MA, Jakob PM, et al. μMPI—Initial experiments with an ultrahigh resolution MPI[J]. IEEE Transactions on Magnetics, 2015, 51(2): 6502104.

服务与反馈:
文章下载】【加入收藏
提示:您还未登录,请登录!点此登录
 
友情链接  
地址:北京安定门外安贞医院内北京生物医学工程编辑部
电话:010-64456508  传真:010-64456661
电子邮箱:llbl910219@126.com