[1] 胡盛寿,高润霖,刘力生,等. 《中国心血管病报告2018》概要[J]. 中国循环杂志, 2019, 34(3): 209-220. Hu SS, Gao RL, Liu LS, et al. Summary of the 2018 Report on Cardiovascular Diseases in China[J]. Chinese Circulation Journal, 2019, 34(3): 209-220. [2] 中国医学影像AI产学研用创新联盟. 人工医学影像AI白皮书[EB/OL]. 2019, https://vcbeat.top. China medical imaging AI industry-university-research innovation alliance. White paper medical imaging AI in China[EB/OL]. 2019, https://vcbeat.top. [3] Wang G, Li W, Zuluaga MA, et al. Interactive medical image segmentation using deep learning with image-specific fine tuning[J]. IEEE Transactions on Medical Imaging, 2018, 37(7): 1562-1573. [4] Balakrishnan G, Zhao A, Sabuncu MR, et al. An unsupervised learning model for deformable medical image registration[C]// In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Seattle, Washington, USA: IEEE Press, 2018: 9252-9260. [5] Hu L, Cui J. Digital image recognition based on fractional-order-PCA-SVM coupling algorithm[J]. Measurement, 2019, 145: 150-159. [6] Frid-Adar M, Diamant I, Klang E, et al. GAN-based synthetic medical image augmentation for increased CNN performance in liver lesion classification[J]. Neurocomputing, 2018, 321: 321-331. [7] Takx RAP, de Jong PA, Leiner T, et al. Automated coronary artery calcification scoring in non-gated chest CT: agreement and reliability[J]. PLoS One, 2014, 9(3): e91239. [8] I?gum I, de Vos B, Wolterink J, et al. Automatic determination of cardiovascular risk by CT attenuation correction maps in Rb-82 PET/CT[J]. Journal of Nuclear Cardiology, 2018, 25(6): 2133-2142. [9] Motwani M, Dey D, Berman D, et al. Machine learning for prediction of all-cause mortality in patients with suspected coronary artery disease: a 5-year multicentre prospective registry analysis[J]. European Heart Journal, 2016, 38(7): 500-507. [10] Liu Y, Dai X, Wolf H, et al. A machine-learning model in predicting hemodynamically significant coronary artery disease: a prospective cohort study[J]. Circulation, 2018, 138(Suppl_1): A10602. [11] Nakanishi R, Dey D, Commandeur F, et al. Machine learning in predicting coronary heart disease and cardiovascular disease events: results from the multi-ethnic study of atherosclerosis (mesa)[J]. Journal of the American College of Cardiology, 2018, 71(11 Supplement): A1483. [12] Commandeur F, Goeller M, Betancur J, et al. Deep learning for quantification of epicardial and thoracic adipose tissue from non-contrast CT[J]. IEEE Transactions on Medical Imaging, 2018, 37(8):1835-1846. [13] Zreik M, Lessmann N, van Hamersvelt RW, et al. Deep learning analysis of the myocardium in coronary CT angiography for identification of patients with functionally significant coronary artery stenosis[J]. Medical image analysis, 2018, 44: 72-85. [14] Khamis H, Zurakhov G, Azar V, et al. Automatic apical view classification of echocardiograms using a discriminative learning dictionary[J]. Medical Image Analysis, 2017, 36: 15–21. [15] Knackstedt C, Bekkers SC, Schummers G, et al. Fully automated versus standard tracking of left ventricular ejection fraction and longitudinal strain: the FAST-Efs Multicenter Study[J]. Journal of the American College of Cardiology , 2015, 66(13): 1456-1466. [16] Dong S, Luo G, Sun G, et al. A left ventricular segmentation method on 3D echocardiography using deep learning and snake[C]// 2016 Computing in Cardiology Conference. Vancouver, BC, Canada: IEEE Press, 2016, 43: 473–476. [17] Zhao Q, Zhang L. ECG feature extraction and classification using wavelet transform and support vector machines[C]// 2005 International Conference on Neural Networks and Brain. Beijing, China: IEEE Press, 2005, 2:1089–1092. [18] Scirè A, Chatzigiannakis I, Anagnostopoulos A. Heartbeat detection and arrhythmia classification from the ECG signal using machine learning tech-niques[D]. Rome: University of Rome, 2018. [19] Hannun AY, Rajpurkar P, Haghpanahi M, et al. Cardiologist-level arrhythmia detection and classification in ambulatory electrocardiograms using a deep neural network[J]. Nature Medicine, 2019, 25(1): 65-69. [20] Betancur J, Rubeaux M, Fuchs T, et al. Automatic valve plane localization in myocardial perfusion SPECT/CT by machine learning: anatomic and clinical validation[J]. Journal of Nuclear Medicine, 2017, 58(6): 961–967. [21] Betancur J, Commandeur F, Motlagh M, et al. Deep learning for prediction of obstructive disease from fast myocardial perfusion SPECT: a multicenter study[J]. JACC: Cardiovascular Imaging, 2018, 11(11): 1654-1663. [22] Dey D, Diaz Zamudio M, Schuhbaeck A, et al. Relationship between quantitative adverse plaque features from coronary computed tomography angiography and downstream impaired myocardial flow reserve by 13N-ammonia positron emission tomography: a pilot study[J]. Circulation: Cardiovascular Imaging, 2015, 8(10): e003255. [23] Dawes T, de Marvao A, Shi W, et al. Machine learning of three-dimensional right ventricular motion enables outcome prediction in pulmonary hypertension: a cardiac MR imaging study[J]. Radiology, 2017, 283(2): 381–390. [24] Zhang L, Wahle A, Chen Z, et al. Predicting locations of high-risk plaques in coronary arteries in patients receiving statin therapy[J]. IEEE Transactions on Medical Imaging, 2018, 37(1): 151–161. [25] Abdolmanafi A, Duong L, Dahdah N, et al. Deep feature learning for automatic tissue classification of coronary artery using optical coherence tomography[J]. Biomedical Optics Express, 2017, 8(2): 1203–1220. [26] Shen D, Wu G, Suk HI. Deep learning in medical image analysis[J].Annual Review of Biomedical Engineering, 2017, 19: 221-248. [27] 孙凯. 随机森林在医学影像分析中的应用研究进展[J]. 北京生物医学工程, 2018, 37(4): 413-418. Sun K. Research progress on application of random forest in medical image analysis[J]. Beijing Biomedical Engineering, 2018, 37(4): 413-418. [28] 袁丽, 吴水才, 袁延超. 一种改进的FastICA算法在胎儿心电提取中的应用[J]. 北京生物医学工程, 2018, 37(5): 488-493. Yuan L, Wu SC, Yuan YC. Application of an improved FastICA algorithm in fetal electrocardiogram extraction[J]. Beijing Biomedical Engineering, 2018, 37(5): 488-493. [29] 翟柏松, 赵向蕊, 陈向前, 等. 术中透视图像质量对双平面定位算法精度的影响[J]. 北京生物医学工程, 2017, 36(4): 372-377. Zhai BS, Zhao XR, Chen XQ, et al. Influence of intraoperative fluoroscopy images’ quality on the accuracy of bi-planar positioning method[J]. Beijing Biomedical Engineering, 2017, 36(4): 372-377. [30] 伍建林, 鄂亚军, 张清, 等. 嗅觉脑功能磁共振成像中提高磁敏感性脑区信噪比的参数优化研究[J]. 中国医学影像技术, 2007, 23(12): 1764-1768. Wu JL, E YJ, Zhang Q, et al. Study of parameter optimum on the olfaction fMRI for increasing SNR of the susceptibility regions of human brain[J]. Chinese Journal of Medical Imaging Technology, 2007, 23(12): 1764-1768.
|