[1] 王昕,李亮,才晓东.改进LIC模型的甲状腺结节超声图像分割算法[J].吉林大学学报(信息科学版),2017,35(1): 68-75. Wang X, Li L, Cai XD. Ultrasound image segmentation algorithm for thyroid nodules based on improved LIC model [J]. Journal of Jilin University (Information Science Edition), 2017,35 (1): 68-75. [2] 龙亚超. 超声甲状腺结节自动分级相关技术研究[D].成都:电子科技大学,2017. Long YC. Research on automatic stratification for thyroid nodules in ultrasound images [D]. Chengdu: University of Electronic Science and Technology of China, 2017. [3]中华医学会内分泌学分会,中华医学会外科学分会, 中国抗癌协会头颈肿瘤专业委员会,等.甲状腺结节和分化型甲状腺癌诊治指南(2012)[J]. 中国肿瘤临床,2012,39(17):1249-1278. [4] 史晓光.2017版甲状腺癌诊疗指南怎么说[N].健康报,2017-08-01(2). [5] 王萍,刘健,岳文胜,等.2016版《甲状腺结节超声诊断指南》在甲状腺良恶性结节鉴别中的应用[J].实用医学影像杂志,2017,18(6): 466-468. Wang P, Liu J, Yue WS, et al. The application of diagnosis guider of thyroid nodules in 2016 with ultrasound in the differentiation of benign and malignant thyroid nodules [J]. Journal of Practical Medical Imaging, 2017, 18 (6): 466 -468. [6] J.H.Yoon,K.Han,E.K.Kim,et al.甲状腺小结节的诊断与管理:甲状腺结节6项指南的比较研究[J].国际医学放射学杂志,2017,(4):467-468. J.H.Yoon,K.Han,E.K.Kim,et al. Diagnosis and management of small thyroid nodules: a comparative study with six guidelines for thyroid [J]. International Journal of Medical Radiology, 2017, (04): 467-468. [7] Li C M,Xu C,Gui C and Fox M D. Distance regularized level set evolution and its application to image segmentation [J]. IEEE Trans. Image Process, 2010,19(12):3243–3254. [8] Chan T,Vese L. Active contours without edges [J]. IEEE Transactions on Image Processing,2001,10(2):266-277. [9] Li C,Kao C Y,Gore J C,et al. Minimization of region-scalable fitting energy for image segmentation [J]. IEEE Transactions on Image Processing, 2008,17(10):1940-1949. [10] 刘瑞娟,何传江,原野.融合局部和全局图像信息的活动轮廓模型[J].计算机辅助设计与图形学学报,2012,24(3):364-371. Liu RJ, He CJ, Yuan Y. Active contours driven by local and global image fitting energy [J]. Journal of Computer-Aided Design & Computer Graphics, 2012,24 (3): 364-371. [11] 郑伟,张晶,李凯玄,郝冬梅.结合局部信息改进的C-V超声图像分割模型[J].光电工程,2015,42(08):66-72. Zheng W, Zhang J, Li KX, et al. The improved C-V ultrasound image segmentation model of combining local information [J]. Opto-Electronic Engineering, 2015,42 (08): 66-72. [12] 王相海,金弋博.高光谱海岸带区域分割的活动轮廓模型[J].中国图象图形学报,2013,18(8):1031-1037. Wang XH, Jin YB. The active contour model for segmentation of coastal Hyperspectral remote sensing image [J]. Journal of Image and Graphics, 2013,18 (8): 1031-1037. [13] 郑斌,徐峰,郭进祥,刘立波.基于Chan-Vese模型的甲状腺结节超声图像分割方法[J].电脑与电信,2018,6:4-5. Zheng B, Xu F, Guo JX, et al. Thyroid nodule ultrasound image segmentation method based on Chan-Vese model [J]. Computer & Telecommunication, 2018,6: 4-5. [14] 徐文杰.超声甲状腺结节图像分割算法研究[D].长春:长春工业大学,2017. Xu WeJ. Ultrasonic thyroid nodule image segmentation algorithms [D].Changchun: Changchun University of Technology, 2017. [15] 张晶.基于活动轮廓模型的甲状腺结节分割算法研究[D].保定:河北大学,2016. Zhang J. Study of segmentation methods of thyroid nodules based on active contour model [D].Baoding: Hebei University, 2017. [16] 赵杰,祁永梅,潘正勇.结合全局和双核局部拟合的活动轮廓分割模型[J].计算机应用,2013,33(04):1092-1095. Zhao J, Qi YM, Pan ZY. Active contour segmentation model of combining global and dual-core local fitting energy [J]. Journal of Computer Applications, 2013,33 (04): 1092-1095. [17] Shattuck D W,Sandorleahy S R, Schaper K A,et al. Magnetic resonance image tissue classification using a partial volume model [J]. Neuroimage, 2001, 13(5):856-876. [18] Taha A,Hanbury A. Metrics for evaluating 3D medical image segmentation: analysis,selection,and tool [J]. BMC medical image, 201, 15( 1) : 29. [19] Cardenes R, de Luis-Garcia R,Bach-Cuadra M.A multidimensional segmentation evaluation for medical image data [J]. Computer Methods and Programs in Biomedicine, 2009, 96 ( 2) : 108-124.
|