设为首页 |  加入收藏
首页首页 期刊简介 消息通知 编委会 电子期刊 投稿须知 广告合作 联系我们
视觉刺激下基于“是-否”状态的脑电信号分类研究

Classification of electroencephalogrambased on state of ‘Yes-No’ during visual stimuli experiment

作者: 李康宁  李明钰  李萌  杜若瑜 
单位:南京邮电大学地理与生物信息学院 (南京 210023) 江苏省智慧健康大数据分析与位置服务工程实验室(南京 210023)
关键词: 脑电信号;视觉刺激;支持向量机;经验模式分解;共空间模式 
分类号:R318.04
出版年·卷·期(页码):2020·39·3(257-263)
摘要:

目的 为了探究脑机接口中脑电信号与判断认知心理活动之间的识别问题,本文在视觉刺激诱发实验设计中采用文字和图片结合的方式进行脑电分类研究以期提高识别率。方法通过设计视觉刺激诱发判断认知脑电实验采集到15名受试者在“是”或“否”状态下的脑电信号,经过预处理和事件相关扰动(event-related spectral dynamics ,ERSP)特征分析,运用经验模式分解(empirical mode decomposition ,EMD)优化共空间模式(common spatial pattern ,CSP)的特征提取算法进行分类识别。首先,利用EMD对预处理后的脑电信号进行有效的固有模态函数(intrinsic mode function,IMF)频段筛选;其次,使用CSP滤波器进行滤波提取特征向量;最后,使用支持向量机(support vector machine ,SVM)进行分类识别,并对测试组进行检验。结果经过EMD-CSP优化滤波后进行SVM分类正确率可达88.97%,相比单独利用CSP进行特征提取下的SVM分类结果提高了约5%。结论EMD-CSP优化滤波方法对判断认知脑电识别的可行性和有效性,为进一步研究脑机接口应用产品的开发提供认知参考依据。

Objective To explore the relationship of cognitive judgement and brain oscillatory activity in communication cognitive task for brain-computer interface (BCI), this paper uses a combination of text and pictures in the design of visual stimulation-induced experiments to conduct EEG classification research in order to improve the recognition rate. Methods The EEG signals of 15 subjects in "yes" or "no" state are collected through the experiment of visual stimulation induced two basic cognitive judgementstates. After preprocessing and event-related spectral dynamics(ERSP) analysis, the feature extraction algorithm of common spatial pattern (CSP) is optimized by empirical mode decomposition (EMD) for classification and recognition. First of all, EMD is used to filter the frequency band of IMFs. Secondly, CSP filter is used to extract feature vector. Finally, support vector machine (SVM) is used for classification and identification, and the test group is tested. Results After optimized filtering by EMD-CSP, the accuracy of SVM classification can reach 88.97%, which is about 5% higher than that of SVM classification using CSP for feature extraction alone. Conclusions The validity of EMD-CSP optimized filtering method for EEG classification provides a reference for further study of "Yes-No" EEG classification and recognition.

参考文献:

[1] 贾花萍. 思维状态的EEG信号分类方法研究[J]. 电子设计工程, 2010

[1] 贾花萍. 思维状态的EEG信号分类方法研究[J]. 电子设计工程, 2010,18(6):124-126.

Jia HP. Classification for EEG signals of different mental tasks[J]. Electronic Design Engineering, 2010,18(6):124-126.

[2] 李颖洁, 樊飞燕, 陈兴时. 脑电分析在认知研究中的进展[J]. 北京生物医学工程,2006, 25(3):321-324.

Li YJ, Fan FY, Chen XS. Development of EEG analysis in the research of cognitive science[J]. Beijing Biomedical Engineering, 2006, 25(3):321-324.

[3] 白芷嫣,卞毓彩,朱颖颖,杜若瑜.基于脑电信号的抑郁情绪倾向研究[J].北京生物医学工程,2018,37(1):21-26.

Bai ZY, Bian YC, Zhu YY, et al. Depressive emotion based on electroencephalography [J].Beijing Biomedical Engineering, 2018,  37(1):21-26.

[4] 李文辉. 自我无关、相关的肯否句句末情绪词加工的行为与脑电研究[D]. 大连:辽宁师范大学, 2011.

Li WH. Behavioral and ERP study of emotional words processing in Self-related/unrelated affirmation and negation sentences[D]. Dalian:Liaoning Normal University, 2011.

[5]陈阳. “所与”的认知实验及脑电计算分析[D]. 厦门:厦门大学, 2014.

Cheng Y. Cognitive experiment and EEG calculation analysis of "the given"[D]. Xiamen:Xiamen University, 2014.

[6] 李子光, 刘国忠. 听觉诱发的“是”与“非”脑电信号研究[J]. 电子科技, 2013, 26(4):8-11.

Li ZG, Liu GZ. Research into “Yes” and “No” Responses by Auditory Stimuli in Human EEG[J]. Electronic Science and Technology,2013, 26(4):8-11.

[7] 乔晓艳, 彭佳卉. 视听诱发脑电特征提取与大脑认知机理分析[J]. 测试技术学报, 2013, 27(6):509-515.

Qiao XY, Peng JH. The analysis on the brain cognitive mechanism and audio-visual evoked EEG feature extraction[J]. Journal of Test and Measurement Technology, 2013, 27(6):509-515.

[8]戚光远. 汉字和图片的认知脑电测谎研究[J]. 智富时代, 2016(增刊2).374-375.

Qi GY. A study of cognitive EEG lie detection of Chinese characters and pictures, The Fortune Times, 2016(Suppl 2).374-375.

[9] Huang NE,Shen  SSP. Hilbert–Huang transform and its applications [M]. Singapore: World Scientific Publishing, 2005.

[10]孔祥浩, 马琳, 薄洪健,等. CNN与CSP相结合的脑电特征提取与识别方法研究[J]. 信号处理, 2018, 34(2):164-173.

Kong XH, Ma L, Bo HJ, et al. Research on EEG feature extraction and recognition method based on CNN and CSP[J].Journal of Signal Processing, 2018, 34(2):164-173.

[11]康莎莎, 周蚌艳, 吕钊,等. 基于CSP的多类运动想象脑电特征自动选择算法[J]. 北京生物医学工程, 2016, 35(4):339-346.

Kang SS, Zhou BY, Lu Z, et al.Automatic selection algorithm for multi-class motor imagery of EEG eigenvalues based on CSP[J].Beijing Biomedical Engineering, 2016, 35(4):339-346.

[12]Mehmood RM,Du RY, Lee HJ. Optimal feature selection and deep learning ensembles method for emotion recognition from human brain EEG sensors[J]. IEEE Access, 2017, 5(99):14797-14806.

[13]沃建中, 林崇德. 大学生对句子、图形的内部加工过程研究[J]. 心理发展与教育, 1997, 13(4):23-28.

Wo JZ, Lin CD, Research on the internal processing process of sentences and graphics of college student[J]. Psychological Development and Education, 1997, 13(4):23-28.

[14]Sander N,Yeung N,van den Wildenberg W,et al.Electrophysiological correlates of anterior cingulate function in a go/no-go task: Effects of response conflict and trial type frequency[J]. Cognitive Affective & Behavioral Neuroscience, 2003, 3(1):17-26.

[15]Delorme A,Makeig S.EEGLAB: an open source toolbox for analysis of single-trial EEG dynamics including independent component analysis[J]. Journal of Neuroscience Methods, 2004, 134(1):9-21.

[16] Du RY, Lee HJ. Frontal alpha asymmetry during the audio emotional experiment revealed by event-related spectral perturbation[C]// International Conference on Biomedical Engineering and Informatics. IEEE, 2016:531-536.

[17] Gábor C, Gábor S, Sarolta K, et al. Event-related theta synchronization predicts deficit in facial affect recognition in schizophrenia[J]. Journal of Abnormal Psychology, 2014, 123(1):178-189.

[18]VapnikV.Statistical learning theory [M] . New York: John Wiley&Sons Inc.,1998.

[19] Arroyo FV. Negatives in context[J]. Journal of Verbal Learning & Verbal Behavior, 1982, 21(1):118-126.

[20]Steinhauer K , Drury JE . On the early left-anterior negativity (ELAN) in syntax studies[J]. Brain & Language, 2012, 120(2):135-162.

[21] Gouvea AC , Phillips C , Kazanina N , et al. The linguistic processes underlying the P600[J]. Language and Cognitive Processes, 2010, 25(2):149-188.

[22]Berkum JJAV , Hagoort P , Brown CM . Semantic integration in sentences and discourse: evidence from the N400[J]. Journal of Cognitive Neuroscience, 1999, 11(6):657-671.

服务与反馈:
文章下载】【加入收藏
提示:您还未登录,请登录!点此登录
 
友情链接  
地址:北京安定门外安贞医院内北京生物医学工程编辑部
电话:010-64456508  传真:010-64456661
电子邮箱:llbl910219@126.com