设为首页 |  加入收藏
首页首页 期刊简介 消息通知 编委会 电子期刊 投稿须知 广告合作 联系我们
纳米纤维素复合材料在骨科领域的研究进展

Research progress of the nanocellulose composite in orthopedics

作者: 康然  刘金龙 
单位:中国人民解放军陆军第八十集团军医院(山东潍坊 261042)
关键词: 纳米纤维素;复合材料;伤口愈合;骨缺损修复;软骨再生 
分类号:R318.08
出版年·卷·期(页码):2020·39·3(317-320)
摘要:

纳米纤维素因其良好的可降解性及组织相容性,近年来在生物医药领域尤其是骨科领域备受关注。纳米纤维素与传统生物材料复合,能够显著改善复合材料的抗压强度及抗溃散性;在同骨科修复材料的复合中,不仅能使引入的生物活性物质有效地定植,而且能模拟生理性的细胞外基质,为活性物质的生长分化提供生理基础。本文结合近年来纳米纤维素复合材料在伤口愈合、骨缺损修复及软骨再生等骨科领域中材料复合方式、改良原理以及体内外试验等方面的研究进展进行综述,为纳米纤维素复合材料的临床应用提供参考。

Nanocellulose attracts research interest in biomedicine area especially orthopedics, because of its good histocompatibility and degradability. Besides, when combined with other biomaterial, both the compressive strength and resistance in collapse of the composites are improved. It's worth noting that the composites of nanocellulose and bone defect repairing material can not only efficiently promote the colonization of introduced bioactive material, but also act as extracellular matrix to support the bioactive material growth and differentiation.This paper focuses on the study of nanocellulose composites used in orthopedics such as would healing, bone defect repairing, and cartilage regeneration. The fabrication method, function principle and in vivo and in vitro experiment  of nanocellulose composite are reviewed in detail,we expect to provide a reference for clinical application.

参考文献:

1.Klemm D, Kramer F, Moritz S, et al. Nanocelluloses: a new family of nature-based materials[J]. Angewandte Chemie, 2011,50(24):5438-5466.

2. 林凤采,卢麒麟,卢贝丽,等.纳米纤维素及其聚合物纳米复合材料的研究进展[J].化工进展,2018,37(9):3454-3470.

Lin FC, Lu QL, Lu BL, et al. Research progress of nanocellulose and its polymer nanocomposites[J]. Chemical Industry and Engineering Progress, 2018,37(9):3454-3470.

3. Halib N, Perrone F,Cemazar M et al. Potential Applications of Nanocellulose-Containing Materials in the Biomedical Field[J]. Materials, 2017,10(8): 977.

4. Ho H V, Makkar P, et al. Preliminary studies on the in vivo performance of various kinds of nanocellulose for biomedical applications[J]. Journal of Biomaterials Applications, 2020,34(7): 942-951.

5 .Chinga-Carrasco G. Potential and limitations of nanocelluloses as components in biocomposite inks for three-dimensional bioprinting and for biomedical devices[J]. Biomacromolecules ,2018,19(3): 701-711.

6. Li JJ, Cha RT, Mou K,et al. Nanocellulose-based antibacterial materials[J]. Advanced Healthcare Materials,2018,7(20): 1800334.

7. Jonas R, Farah L. Production and application of microbial cellulose[J]. Polymer Degradation and Stability,1998, 59: 101–106.

8.Mondal S. Preparation, properties and applications of nanocellulosic materials[J]. Carbohydr Polym, 2017, 163:301-316。

9. Habibi Y, Lucia LA, Rojas OJ. Cellulose nanocrystals: chemistry, self-assembly, and applications[J]. Chemical Reviews, 2010, 110(6):3479-3500.

10.  Dumanli AG. Nanocellulose and its composites for biomedical applications[J]. Current Medicinal Chemistry 2017,24(5): 512-528.

11.Czaja WK., Young DJ, Kawecki M ,et al. The future prospects of microbial cellulose in biomedical applications[J].Biomacromolecules, 2007,8(1): 1-12.

12. Khalid A,  Khan R,Ul-Islam M ,et al. Bacterial cellulose-zinc oxide nanocomposites as a novel dressing system for burn wounds Ayesha[J]. Carbohydrate Polymers, 2017,  164: 214–221.

13. Alkhatib Y; Dewaldt M, Moritz S ,et al. Controlled extended octenidine release from a bacterial nanocellulose/poloxamer hybrid system[J]. European Journal of Pharmaceutics and Biopharmaceutics, 2017,112:164–176.

14.Sevinc IE, Fahanwi A N, Ufuk Y. Genipin crosslinked gelatin-diosgenin-nanocellulose hydrogels for potential wound dressing and healing applications[J]. International Journal of Biological Macromolecules,2020,149: 651-663.

15. Guo R, Lan Y, Xue W, et al. Collagen-cellulose nanocrystal scaffolds containing curcumin-loaded microspheres on infected full-thickness burns repair[J]. Tissue Engineering and Regenerative Medicine, 2017,11(12): 3544-3555.

16. Mo Y, Guo R, Zhang Y, et al. Controlled dual delivery of angiogenin and curcumin by electrospun nanofibers for skin regeneration[J]. Tissue Engineering Part A ,2017, 23(13-14):597–608.

17. Mertaniemi H, Escobedo-Lucea C, Sanz-Garcia A, et al. Human stem cell decorated nanocellulose threads for biomedical applications[J]. Biomaterials ,2016, 82: 208–220.

18. Wu XH, Wu ZY, Su JC ,et al. Nano-hydroxyapatite promotes self-assembly of honeycomb pores in poly(L-lactide) films through breath-figure method and MC3T3-E1 cell functions[J]. RSC Advances,2015,5(9):6607-6616.

19. Atak BH, Buyuk B, Huysal M, et al. Preparation and characterization of amine functional nano-hydroxyapatite/chitosan bionanocomposite for bone tissue engineering applications[J]. Carbohydrate Polymers. 2017,164:200-213.

20. Ao CH, Niu Y, Zhang X, et al. Fabrication and characterization of electrospun cellulose/nano-hydroxyapatite nanofibers for bone tissue engineering[J]. International journal of Biological Macromolecules, 2017, 97,568–573.

21. 刘金龙,刘相成,张阿丽,等. α-CSH/NC复合植骨材料的理化性质测定[J].北京生物医学工程,2019,38(3):298-302.  

Liu JL, Liu XC, Zhang AL,et al. Study on the physicochemical properties of α-CSH/NC composite bone graft [J].Beijing Biomedical Engineering,2019,38(3):298-302 .

22. Singh BN, Panda N N, Mund R, et al. Carboxymethyl cellulose enables silk fibroin nanofibrous scaffold with enhanced biomimetic potential for bone tissue engineering application[J]. Carbohydrate Polymers, 2016,151: 335–347

23. Gaihre B, Jayasuriya AC. Fabrication and characterization of carboxymethyl cellulose novel microparticles for bone tissue engineering[J]. Materials Science and Engineering C ,2016, 69: 733–743.

24. Atila D, Keskin D, Tezcaner A. Crosslinked pullulan/cellulose acetate fibrous scaffolds for bone tissue engineering[J]. Materials Science and Engineering C, 2016, 69: 1103–1115.

25. Markstedt K, Mantas A, Tournier I ,et al. 3D bioprinting human chondrocytes with nanocellulose-alginate bioink for cartilage tissue engineering applications[J]. Biomacromolecules, 2015, 16: 1489–1496.

26. Vijay H, Toma? V, Uro? M, et al. Mechanical Properties and Cytotoxicity of Differently Structured Nanocellulose-hydroxyapatite Based Composites for Bone Regeneration Application[J]. Nanomaterials ,2019,10(1): 25.

27. M?ller T, Amoroso M, H?gg D,et al. In Vivo Chondrogenesis in 3D Bioprinted Human Cell-laden Hydrogel Constructs[J]. Plastic Reconstructive Surgery-Global. Open 2017, 5(2):e1227.

28. Martinez AH, Feldmann EM, Pleumeekers MM, et al. Novel bilayer bacterial nanocellulose scaffold supports neocartilage formation in vitro and in vivo[J]. Biomaterials, 2015, 44: 122–133

29. De W, Hendriks JA, Zhao X, et al. Concise review: Unraveling stem cell cocultures in regenerative medicine: Which cell interactions steer cartilage regeneration and how[J]? Stem Cells Translational Medicine, 2014, 3: 723–733.

30.Gabriel F, Laetiyia K, Ysia I, et al. Bone substitutes: a review of their characteristics, clinical use, and perspectives for large bone defects management[J]. Journal of Tissue Engineering ,2018, 9(3):1-18.

31 黄彪,卢麒麟,唐丽荣. 纳米纤维素的制备及应用研究进展[J].林业工程学报,2016,1(5): 1-9.

Huang B, Lu QL, Tang LR, Research progress of nanaocelluse manufacture and application[J]. Jouranl of Forestry Engineering,2016,1(5):1-9

32 高艳红,石瑜,田超,等.微纤化纤维素及其制备技术的研究进展[J].化工进展,2017,36(1):232-246

Gao YH, Shi Y, Tian C, et al. Properties and preparation progress of microfibrillated cellulose:a review[J]. Chemical Industry and Engineering Progress, 2017, 36(1): 232-246.

服务与反馈:
文章下载】【加入收藏
提示:您还未登录,请登录!点此登录
 
友情链接  
地址:北京安定门外安贞医院内北京生物医学工程编辑部
电话:010-64456508  传真:010-64456661
电子邮箱:llbl910219@126.com