[ 1 ] 中国放射性脑损伤多学科协作组, 中国医生协会神经内科分会脑与脊髓损害专业委员会. 放射性脑损伤诊治中国专家共识[J]. 中华神经医学杂志, 2019, 18(6):541-549. [ 2 ] Makale M, Mcdonald CR, Hattangadi-Gluth JA, et al. Mechanisms of radiotherapy-associated cognitive disability in patients with brain tumours [ J ]. Nature Reviews Neurology, 2017, 13:52-64. [ 3 ] Gondi V, Pugh SL, Tome WA, et al. Preservation of memory with conformal avoidance of the hippocampal neural stem-cell compartment during whole-brain radiotherapy for brain metastases (RTOG 0933):a phase II multi-institutional trial[ J]. Journal of Clinical Oncology, 2014, 32(34):3810-3816. [ 4 ] Eekers DBP, In’t Ven L, Roelofs E, et al. The EPTN Consensus-based atlas for CT-and MR-based contouring in neuro-oncology [ J]. Radiotherapy and Oncology, 2018, 128 ( 1 ):37-43. [ 5 ] 冉昭, 简俊明, 王蒙蒙, 等. 基于全卷积神经网络的直肠癌 肿瘤磁共振影像自动分割方法[ J]. 北京生物医学工程, 2019, 38(5):465-471. Ran Z, Jian JM, Wang MM, et al. Automatic segmentation method based on full convolution neural network for rectal cancer tumors in magnetic resonance image [ J ]. Beijing Biomedical Engineering, 2019, 38(5):465-471. [ 6 ] 刘丰伟, 李汉军, 张逸鹤, 等. 人工智能在医学影像诊断中的应用[J]. 北京生物医学工程, 2019, 38(2):206-211. Liu FW, Li HJ, Zhang YH, et al. Application of artificial intelligence in medical imaging diagnosis [J]. Beijing Biomedical Engineering, 2019, 38(2):206-211. [ 7 ] 黄星奕, 丘子明, 许燕. 基于深度监督全卷积神经网络的 MRI 脑图像语义分割算法[J]. 北京生物医学工程, 2019, 38 (3):277-282. Huang XY, Qiu ZM, Xu Y. Semantic segmentation algorithm for MRI brain image based on deeply supervised fully convolutional network[ J]. Beijing Biomedical Engineering, 2019, 38 ( 3): 277-282. [ 8 ] Dill V, Franco AR, Pinho MS. Automated methods for hippocampus segmentation:the evolution and a review of the state of the art[J]. Neuroinformatics, 2015, 13:133-150. [ 9 ] Mccarroll RE, Beadle BM, Balter PA, et al. Retrospective validation and clinical implementation of automated contouring of organs at risk in the head and neck: a step toward automated radiation treatment planning for low-and middle-income countries [J]. Journal of Global Oncology, 2018(4):1-11. [10] Fischl B, Salat DH, Busa E, et al. Whole brain segmentation: automated labeling of neuroanatomical structures in the human brain[J]. Neuron, 2002, 33(3):341-355. [11] Cox RW. AFNI: software for analysis and visualization of functional magnetic resonance neuroimages [ J]. Computers and Biomedical Research, 1996, 29(3):162-173. [12] Fischl B. FreeSurfer[J]. Neuroimage, 2012, 62(2):774-781. [13] Liang P, Shi L, Chen N, et al. Construction of brain atlases based on a multi?center MRI dataset of 2020 Chinese adults[ J]. Scientific Reports, 2015, 5:18216. [14] Collins DL, Neelin P, Peters TM, et al. Automatic 3D intersubject registration of MR volumetric data in standardized Talairach space[ J]. Jounral of Computer Assisted Tomography, 1994, 18(2):192-205. [15] Lin L, Dou Q, Jin YM, et al. Deep learning for automated contouring of primary tumor volumes by MRI for nasopharyngeal carcinoma[J]. Radiology, 2019, 291(3):677-686. [16] Tzourio-Mazoyer N, Landeau B, Papathanassiou D, et al.Automated anatomical labeling of activations in SPM using a macroscopic anatomical parcellation of the MNI MRI single-subject brain[J]. NeuroImage, 2002, 15(1):273-289.
|