设为首页 |  加入收藏
首页首页 期刊简介 消息通知 编委会 电子期刊 投稿须知 广告合作 联系我们
基于 CT 的兔肺肿瘤微波消融的温度场研究

Temperature field of microwave ablation of rabbit lung tumors based on CT

作者: 高翔  陈仕林  刘静纨  冯国栋  张静渊  南群 
单位: 北京工业大学环境与生命学部(北京100124) 江苏省肿瘤医院(江苏南京 210009) 北 京 建 筑 大 学 电 气 与 信 息 工 程 学 院 ( 北 京102616) 通信作者:南群, 教授 E-mail:nanqun@ bjut. edu. cn
关键词: 微波消融;  三维重建;  肺肿瘤;  温度场;  数值模拟 
分类号:R318.01
出版年·卷·期(页码):2020·39·4(372-379)
摘要:

目的 探索基于三维重建肺肿瘤的微波消融仿真方法,为个性化手术规划模型提供理论基础。方法 首先利用 Mimics 三维重建软件将荷瘤兔 CT 图像重建成三维数字化模型,同时在 COMSOL 仿真软件中构建了微波天线模型和理想化肺模型,组成微波消融仿真几何模型。然后采用有限元仿真方法,固定消融功率为 30W,设置组织热物性参数及边界条件计算肿瘤组织和肺组织温度场分布,分析得出合适的消融参数。结果 成功建立了 13. 63 mm×11. 31 mm 的椭球状肺肿瘤的三维模型。基于电磁场与温度场的计算,可以得到肿瘤温度场和肺组织温度场的分布。在使用消融功率 30 W / 消融时间 300 s时,可以使其温度场完全覆盖兔肺肿瘤并预留出安全的消融边界。结论 根据个性化肿瘤 CT 可成功建立其三维肿瘤模型,应用于仿真研究之中可以从肿瘤组织和肺组织温度场分布得到合适的消融参数,该法对降低微波消融肺肿瘤手术难度?改善微波消融肺肿瘤手术效果有着重要意义。

Objective To explore the simulation method of microwave ablation based on three-dimensional reconstruction of lung tumors, and to provide basic research for personalized surgical planning model. Methods Firstly, the CT images of tumor-bearing rabbits were reconstructed into three-dimensional digital models by Mimics. At the same time, the microwave antenna model and the idealized lung model were built in the COMSOL to form the microwave ablation simulation geometry model. Then, using the finite element simulation method, the fixed ablation power was 30W, and the tissue thermophysical parameters and boundary conditions were set to calculate the temperature field distribution of tumor tissue and lung tissue, and the appropriate ablation parameters were analyzed. Results The 3D model of 13. 63mm×11. 31mm ellipsoid lung tumor was successfully established. Based on the calculation of electromagnetic field and temperature field, the distribution of tumor temperature field and lung temperature field could be obtained. When the ablation power was 30W and ablation time was 300 s, the temperature field could completely cover the lung tumor and reserve a safe ablation boundary. Conclusions The 3D tumor model can be successfully established according to the personalized tumor CT, and the appropriate ablation parameters can be obtained from the temperature field distribution of tumor tissue and lung tissue in the simulation study. This method is of great significance to reduce the difficulty of microwave ablation of lung tumor and improve the effect of microwave ablation of lung tumor.

参考文献:

[ 1 ] Bray F, Ferlay J, Soerjomataram I, et al. Global cancer statistics 2018:GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries[ J]. CA: A Cancer Journal for Clinicians. 2018, 68(6):394-424.

[ 2 ] Rojewski AM, Zuromski KL, Toll BA. Strategies for smoking cessation among high risk populations to prevent lung cancer[J]. Expert Review of Respiratory Medicine, 2017, 11(2):85-87.

[ 3 ] Vogl TJ, Nour-Eldin NA, Albrecht MH, et al. Thermal Ablation of Lung Tumors:Focus on Microwave Ablation[ J]. Rofo, 2017, 189(9):828-843.

[ 4 ] Alexander ES, Dupuy DE. Lung cancer ablation: technologies and techniques[J]. Seminars Interventional Radiology, 2013, 30 (2):141-150.

[ 5 ] 陈凯,方主亭. 热消融在肺癌中的应用和展望[ J]. 中华介入放射学电子杂志. 2019, 7(2):126-129.

[ 6 ] Cheng G, Shi L, Qiang W, et al. The safety and efficacy of microwave ablation for the treatment of CRC pulmonary metastases[J]. International Journal of Hyperthermia. 2017, 34 (4):486-491.

[ 7 ] 嵇敏洁,印佳,杨悦,等. 肿瘤热疗无损测温方法的研究进展[J]. 北京生物医学工程. 2019, 38(1):96-101.

Ji MJ, Yin J, Yang Y, et al. Advances in non-invasive temperature measurement methods for hyperthermia[ J]. Beijing Biomedical Engineering, 2019, 38(1):96-101.

[ 8 ] 郭孟刚,李丽. 热消融在肺癌治疗中的研究进展[ J]. 中国医药指南, 2015, 13(26):44-46.

[ 9 ] 翟飞,南群,张会娟,等. 房颤微波消融天线研究现状[ J]. 北京生物医学工程. 2013, 32(1):95-100.

Zhai F, Nan Q, Zhang HJ, et al. Review of microwave ablation antenna for atrial fibrillation [ J ]. Beijing Biomedical Engineering, 2013, 32(1):95-100.

[10] 南群,王羽佳,赵楠,等. 水冷式微波天线热凝固离体猪肝的实验 研 究 [ J ]. 北 京 生 物 医 学 工 程. 2008, 27 ( 5 ):502-504, 508.

Nan Q, Wang YJ, Zhao N, et al. Experimental study on thermal coagulation in ex-vivo porcine liver with a water-cooled microwave antenna[ J]. Beijing Biomedical Engineering, 2008, 27 ( 5 ):502-504, 508.

[11] 罗光彩. 2450 MHz 微波消融离体猪肺组织的实验研究[ D].泰安:泰山医学院, 2014.

Luo GC. Experimental study on 2450mhz microwave ablation for porcine lung in vitro[ D]. Tai’ an:Taishan Medical University, 2014.

[12] 袁海宾,潘玉均,朱莉,等. 可弯曲水冷微波消融针经气管猪肺外周消融的相关性研究[ J]. 中国医学计算机成像杂志,2019, 25(4):405-409.

Yuan HB, Pan YJ, Zhu L, et al. Research of flexible bronchoscopy-guided water-cooled microwave ablation of peripheral porcine lung[J]. Chinese Computed Medical Imaging, 2019, 25(4):405-409.

[13] 李欣,刘卫星,李春伶,等. 经皮微波消融活体兔肺的实验研究[J]. 医学影像学杂志,2012, 22(6):1014-1017.

Li X, Liu WX, Li CL, et al. CT-guided percutaneous microwave ablation of lung: a preliminary study [ J]. Journal of Medical Imaging, 2012, 22(6):1014-1017.

[14] 李欣,张宏,盛林,等. CT 引导建立兔肺 VX2 肿瘤模型的实验研究[J]. 介入放射学杂志,2009, 18(2):141-143.

Li X, Zhang H, Sheng L, et al. CT - guided establishment of rabbit lung VX2 tumor model [ J ]. Journal of Interventional Radiology, 2009, 18(2):141-143.

[15] 马幸生,张永恒,刘勇恩,等. CT 引导下经皮穿刺微波消融治

疗肺癌的临床应用[J]. 西部医学, 2018, 30(1):72-76, 80.

Ma XS, Zhang YH, Liu YE, et al. Computed tomography-guided percutaneous microwave ablation therapy for lung cancer [ J ]. Medical Journal of West China, 2018(1):72-76, 80.

[16] 胡媛媛,肖红兵,孙东旭,等. CT 引导下经皮微波消融治疗周围型肺癌的临床研究[ J]. 临床肺科杂志, 2018, 23 ( 7):1210-1213.

Huo YY, Xiao HB, Sun DX, et al. Clinical study of CT-guided percutaneous microwave ablation therapy for peripheral lung cancer[ J]. Journal of Clinical Pulmonary Medicine, 2018, 23(7):1210-1213.

[17] 陈锦,林征宇,林清锋,等. MRI 引导下肺转移癌微波消融治疗 6 例[J]. 介入放射学杂志, 2019, 28(11):1056-1061.

Chen J, Lin ZY, Lin QF, et al. Preliminary results of MRI-guided microwave ablation for lung metastases in 6 patients[ J]. Journal of Interventional Radiology, 2019, 28(11):1056-1061.

[18] 黄伟,马幸生,刘勇恩. 微波消融术在肺癌中的应用[J]. 中国胸心血管外科临床杂志, 2015, 22(3):265-268.

Huang W, Ma XS, Liu YE. Application of microwave ablation for lung cancer [ J ]. Chinese Journal of Clinical Thoracic and Cardiovascular Surgery, 2015, 22(3):265-268.

[19]赵金哲,王娟,沐勇杰,等.肝癌微波消融中热损伤参数分析 [J]. 北京生物医学工程, 2019, 38(4):392-399.

[20]Zhao JZ, Wang J, Mu YJ, et al. Analysis of thermal damage parameters in microwave ablation of liver cancer [ J]. Beijing Biomedical Engineering, 2019, 38(4):392-399.

[20] 王力伟,张丽云,王忠敏. 移植性肺癌动物模型研究进展[ J].介入放射学杂志, 2015(7):645-649.

Wang LW, Zhang LY, Wang ZM. Transplanted pulmonary cancer model in experimental animals:recent progress in research [J]. Journal of Interventional Radiology, 2015(7):645-649.

[21] Labonté S, Blais A, Legault S, et al. Monopole antennas for microwave catheter ablation[J]. IEEE transactions on Microwave Theory and Techniques, 1996, 44(10):1832-1840.

[22] Hurter W, Reinbold F, Lorenz WJ. A dipole antenna for interstitial microwave hyperthermia [ J]. IEEE Transactions on Microwave Theory and Techniques, 1991, 39(6):1048-1054.

[23] Brace CL, Laeseke PF, van der Weide DW, et al. Microwave ablation with a triaxial antenna:results in ex vivo bovine liver[J]. IEEE Transactions on Microwave Theory and Techniques, 2005, 53(1):215-220.

[24] Bertram JM, Yang D, Converse MC, et al. A review of coaxial-based interstitial antennas for hepatic microwave ablation [ J]. Critical ReviewsTM in Biomedical Engineering, 2006, 34 ( 3): 187-213.

[25] Deardorff DL, Diederich CJ, Nau WH. Control of interstitial thermal coagulation: comparative evaluation of microwave and ultrasound applicators[J]. Medical Physics, 2001, 28(1):104-117.

[26] Rattanadecho P, Keangin P. Numerical study of heat transfer and blood flow in two-layered porous liver tissue during microwave ablation process using single and double slot antenna [ J ]. International Journal of Heat and Mass Transfer, 2013, 58( 1 - 2):457-470.

[27] Prakash P. Theoretical modeling for hepatic microwave ablation [J]. The Open Biomedical Engineering Journal, 2010, 4:27-38. [28] Chiang J, Wang P, Brace CL. Computational modelling of microwave tumour ablations [ J ]. International Journal of Hyperthermia, 2013, 29(4):308-317.

[29] Ma L, Paul DL, Pothecary N, et al. Experimental validation of a combined electromagnetic and thermal FDTD model of a microwave heating process[ J]. IEEE Transactions on Microwave Theory and Techniques, 1995, 43(11):2565-2572.

[30] Saito K, Nakayama O, Hamada L, et al. Analysis of temperature distributions generated by square array applicator composed of coaxial-slot antennas for hyperthermia [ J ]. Electronics and Communications in Japan ( Part II: Electronics ), 2001, 84 (11):20-29.

[31] Pennes HH. Analysis of tissue and arterial blood temperatures in the resting human forearm [ J]. Journal of Applied Physiology, 1948, 1(2):93-122.

[32] Yamazaki N, Watanabe H, Lu X, et al. Development of a temperature distribution simulator for lung RFA based on air dependence of thermal and electrical properties [ J ]. Annual International Conference of the IEEE Engineering in Medicine and Biology Society, 2012, 2012:5699-5702.

[33] Mazziotti A, Cavallari A. Percutaneous US-guided ablation of liver metastases[J]. Radiology, 1997, 205(2):582-583.

[34] Livraghi T, Goldberg SN, Lazzaroni S, et al. Hepatocellular carcinoma:radio-frequency ablation of medium and large lesions [J]. Radiology, 2000, 214(3):761-768.

[35] 王强,刘瑞宝,张立成. 肺癌微波消融治疗进展[J]. 中国肺癌杂志, 2010, 13(1):78-81.

Wang Q, Liu RB, Zhang LC. Advances in microwave coagulation therapy of lung cancer [ J]. Chinese Journal of Lung Cancer, 2010,13(1):78-81.

[36] Chiang J, Hynes KA, Bedoya M, et al. A dual-slot microwave antenna for more spherical ablation zones: ex vivo and in vivo validation[J]. Radiology, 2013, 268(2):382-389.

[37] 张培海,夏志军,刘慧婷. 基于计算机断层血管造影的盆部原发肿瘤三维模型重建及临床应用[J]. 中国医药导报, 2014,11(1):86-89.

Zhang PH, Xia ZJ, Liu HT, et al. The reconstruction of digital three-dimensional model based on computed tomography angiographic data and its application in the primary extra-organic tumors in pelvis[J]. China Medical Herald, 2014, 11(1):86-89.

[38] Carberry GA, Nocerino E, Cristescu MM, et al. Microwave ablation of the lung in a porcine model:vessel diameter predicts pulmonary artery occlusion[J]. Cardiovascular and Interventional Radiology, 2017, 40:1609-1616.

[39] Tian Z, Cheng Y, Dong T, et al. Numerical study for lung microwave ablation in different thermal and electrical properties [ M ] / / World Congress on Medical Physics and Biomedical Engineering 2018. Singapore: Springer, Singapore, 2019: 563-566.

[40] Sharma S, Sarris CD. A novel multiphysics optimization-driven methodology for the design of microwave ablation antennas[ J]. IEEE Journal on Multiscale and Multiphysics Computational Techniques, 2016, 1:151-160.

[41] Ibitoye ZA, Nwoye EO, Aweda MA, et al. Optimization of dual slot antenna using floating metallic sleeve for microwave ablation [J]. Medical Engineering & Physics, 2015, 37(4):384-391.

[42] 王娟,赵金哲,沐勇杰,等. 基于有限元仿真的微波消融针设计方法的研究[J]. 生物医学工程研究, 2019, 38(2):232-236.

Wang J, Zhao JZ, Mu YJ, et al. Design methodology research of microwave ablation antenna based on finite element method [ J]. Journal of Biomedical Engineering Research, 2019, 38(2):232-236.

[43] 谌亮,彭敏,翁一鸣,等.免疫微环境在肺癌中的研究进展[ J].

Chen L, Peng M, Weng YM, et al. Research progress on immune microenvironment of lung cancer [ J ]. China Medical Herald,2019,16(35):28-31.

[44] 赵金哲,王娟,沐勇杰,等. 一种实用微波消融仿真模型的构建方法[J]. 中国医疗设备, 2019, 34(6):35-38.

Zhao JZ, Wang J, Mu YJ, et al. Construct of a practical simulation model of microwave ablation [ J ]. China Medical Devices, 2019, 34(6):35-38.

服务与反馈:
文章下载】【加入收藏
提示:您还未登录,请登录!点此登录
 
友情链接  
地址:北京安定门外安贞医院内北京生物医学工程编辑部
电话:010-64456508  传真:010-64456661
电子邮箱:llbl910219@126.com