[ 1 ] 戴建荣, 胡逸民. 图像引导放疗的实现方式[J]. 中华放射肿瘤学杂志, 2006, 15(2):132-135. Dai JR, Hu YM. Image guided radiotherapy implementation[ J]. Chinese Journal of Radiation Oncology, 2006, 15(2):132-135. [ 2 ] Kim J, Fessler JA, Lam KL, et al. A feasibility study of mutual information based setup error estimation for radiotherapy [ J ]. Medical Physics, 2001, 28(12):2507-2517. [ 3 ] Sykes JR, Lindsay R, Iball G, et al. Dosimetry of CBCT: methods, doses and clinical consequences [ J ]. Journal of Physics:Conference Series, 2013, 444:012017. [ 4 ] Altunbas C, Zheng D, Weiss E, et al. SU - FF - T - 490: the effect of daily cone beam CT imaging dose on the secondary cancer risk for patients receiving prostate IMRT treatments[ J]. Medical Physics, 2009, 36(6Part16):2636. [ 5 ] Spezi E, Downes P, Jarvis R, et al. Patient-specific three-dimensional concomitant dose from cone beam computed tomography exposure in image-guided radiotherapy [ J ]. International Journal of Radiation Oncology? Biology? Physics, 2012, 83(1):419-426. [ 6 ] 吴润叶, 高黎, 李明辉, 等. 应用非每日锥形束 CT 校位减少摆位误差对鼻咽癌调强放疗剂量影响[ J]. 中华放射肿瘤学杂志, 2011, 20(5):379-383. Wu RY, Gao L, Li MH, et al. Using non-daily cone-beam computed tomography reduce dosimetric effect of set-up errors in intensity-modulated radiotherapy for nasopharyngeal cancer [ J]. Chinese Journal of Radiation Oncology, 2011, 20(5):379-383. [ 7 ] 孔玲玲, 程健, 李宝生, 等. 保留乳房术后放疗锥形束 CT 引导系统摆位误差预测的可行性研究[J]. 中华肿瘤防治杂志,2013, 20(12):949-952. Kong LL, Cheng J, Li BS, et al. Feasibility study of systematic setup error prediction for breast irradiation after breast-conserving therapy based on cone-beam CT setup verification[ J]. Chinese Journal of Cancer Prevention and Treatment, 2013, 20 ( 12): 949-952. [ 8 ] 王玮, 李建彬, 徐敏, 等. 锥形束 CT 引导全乳调强放疗摆位 误差自适应的预测与校正[ J]. 中华肿瘤杂志, 2016, 38 (3):197-201. Wang W, Li JB, Xu M, et al. Cone beam CT-derived adaptive radiotherapy for setup error assessment and correction in whole breast intensity modulated radiotherapy [ J]. Chinese Journal of Oncology, 2016, 38(3):197-201. [ 9 ] 李庆, 尹龙斌, 谢慧轻, 等. 鼻咽癌调强放疗中摆位误差的变化趋势:基于千伏级锥形束 CT 的前瞻性研究[ J]. 放射学实践, 2017, 32(8):870-875. Li Q, Yin LB, Xie HQ, et al. Trends of inter-fractional setup errors in intensity-modulated radiotherapy for nasopharyngeal carcinoma: a prospective study based on kilovoltage cone-beam computed tomography[ J]. Radiologic Practice, 2017, 32( 8): 870-875. [10] 丘敏敏, 钟嘉健, 欧阳斌, 等. 基于 高 斯 混 合 模 型 Varian NovalisTX 直线加速器盆腔肿瘤放疗摆位误差分布预测模型的构建[ J]. 中山大学学报(医学科学版), 2019, 40 ( 2):284-290. Qiu MM, Zhong JJ, Ouyang B, et al. Set-up errors distribution prediction model for pelvic tumors radiotherapy of Varian NovalisTX medical linear accelerator based on gaussian mixtures [ J]. Journal of Sun Yat-sen University ( Medical Sciences), 2019, 40(2):284-290. [11] Bengio Y. Learning deep architectures for AI [ J]. Foundations and Trends ? in Machine Learning, 2009, 2(1):1-127. [12] 张方圆, 郁芸, 赵宇, 等. 人工神经网络在临床医学中的应用[J]. 北京生物医学工程, 2016, 35(4):422-428. Zhang FY, Yu Y, Zhao Y, et al. Application of artificial neural network in clinical medicine [ J ]. Beijing Biomedical Engineering, 2016, 35(4):422-428. [13] Spencer M, Eickholt J, Cheng J. A deep learning network approach to ab initio protein secondary structure prediction[ J]. IEEE / ACM Transactions on Computational Biology & Bioinformatics, 2015, 12(1):103-112. [14] 李伟, 杨金才, 黄牛. 深度学习在药物设计与发现中的应用[J]. 药学学报, 2019, 54(5):761-767. Li W, Yang JC, Huang N. Deep learning in drug design and discovery [ J ]. Acta Pharmaceutica Sinica, 2019, 54 ( 5 ):761-767. [15] Ayachi R, Afif M, Said Y, et al. Traffic signs detection for real-world application of an advanced driving assisting system using deep learning [ J]. Neural Processing Letters, 2020, 51 ( 1): 837-851. [16] Sezer OB, Ozbayoglu AM. Algorithmic financial trading with deep convolutional neural networks: time series to image conversion approach [ J]. Applied Soft Computing, 2018, 70: 525-538. [17] 邓金城, 彭应林, 刘常春, 等. 深度卷积神经网络在放射治疗计划图像分割中的应用[ J]. 中国医学物理学杂志, 2018,35(6):621-627. Deng JC, Peng YL, Liu CC, et al. Application of deep convolution neural network in radiotherapy planning image segmentation[J].Chinese Journal of Medical Physics, 2018, 35 (6):621-627. [18] 王燃. 基于深度学习的胸腹部肿瘤呼吸运动的实时跟踪方法研究[D]. 深圳:中国科学院深圳先进技术研究院, 2019. Wang R. Deep learning in real-time tracking method for respiratory motion of thoracic and abdominal tumors [ D ]. Shenzhen:Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, 2019. [19] Dinkla AM, Wolterink JM, Maspero M, et al. MR-only brain radiation therapy:dosimetric evaluation of synthetic CTs generated by a dilated convolutional neural network [ J ]. International Journal of Radiation Oncology*Biology*Physics, 2018, 102 (4):801-812. [20] Ibragimov B, Toesca DAS, Yuan Y, et al. Neural networks for deep radiotherapy dose analysis and prediction of liver SBRT outcomes [ J ]. IEEE Journal of Biomedical and Health Informatics, 2019, 23(5):1821-1833. [21] Keras. The Python deep learning library [EB / OL]. (2019-11-6)[2019-11-15] https: / / keras.io / . [22] 覃光华, 丁晶, 陈彬兵. 预防过拟合现象的人工神经网络训练策略及其应用[J]. 长江科学院院报, 2002, 19(3):59-61. Qin GH, Ding J, Chen BB. Learning strategies of artificial neural networks for preventing over-training and their application [ J]. Journal of Yangtze River Scientific Research Institute, 2002, 19 (3):59-61. [23] Lin S, Pan J, Han L, et al. Nasopharyngeal carcinoma treated with reduced-volume intensity-modulated radiation therapy:report on the 3-year outcome of a prospective series[ J]. International Journal of Radiation Oncology*Biology*Physics, 2009, 75 (4):1071-1078.
|