[ 1 ] Tang D, Tare RS, Yang LY, et al. Biofabrication of bone tissue: approaches, challenges and translation for bone regeneration[J]. Biomaterials, 2016, 83:363-382. [ 2 ] Ji K, Wang Y, Wei Q, et al. Application of 3D printing technology in bone tissue engineering [ J ]. Bio-Design and Manufacturing, 2018, 1:203-210. [ 3 ] Garrett B. 3D printing: new economic paradigms and strategic shifts[J]. Global Policy, 2014, 5(1):70-75. [ 4 ] 张家彬, 马志勇, 陈宏庆, 等. 45S5 生物活性骨组织支架 3D打印制备及性能研究[ J]. 北京生物医学工程, 2018, 37(6):597-602, 610. Zhang JB, Ma ZY, Chen HQ, et al. Fabrication and performance of 45S5 bioactive scaffold based on 3D printing [ J]. Beijing Biomedical Engineering, 2018, 37(6):597-602, 610. [ 5 ] Ma H, Feng C, Chang J, et al. 3D - printed bioceramic scaffolds:from bone tissue engineering to tumor therapy[J]. Acta Biomaterialia, 2018, 79:37-59. [ 6 ] Bose S, Vahabzadeh S, Bandyopadhyay A. Bone tissue engineering using 3D printing [ J]. Materials Today, 2013, 16 (12):496-504. [ 7 ] Park J, Bauer S, von der Mark K, et al. Nanosize and vitality: TiO 2 nanotube diameter directs cell fate[J]. Nano Letters, 2007, 7(6):1686-1691. [ 8 ] Navarro M, Aparicio C, Charles-Harris M, et al. Development of a biodegradable composite scaffold for bone tissue engineering: physicochemical, topographical, mechanical, degradation, and biological properties[M] / / Ordered Polymeric Nanostructures at Surfaces. Berlin:Springer-Verlag Berlin Heidelberg, 2006, 200: 209-231. [ 9 ] Bártolo P, Bidanda B. Bio-materials and prototyping applications in medicine[M]. Berlin:Springer Nature Switzerland AG, 2008. [10] Qu X, Xia P, He J, et al. Microscale electrohydrodynamic printing of biomimetic PCL / nHA composite scaffolds for bone tissue engineering[J]. Materials Letters, 2016, 185:554-557. [11] Huang B, Caetano G, Vyas C, et al. Polymer-ceramic composite scaffolds:the effect of hydroxyapatite and β-tri-calcium phosphate [J]. Materials(Basel), 2018, 11(1):129. [12] Yeo MG, Kim GH. Preparation and characterization of 3D composite scaffolds based on rapid-prototyped PCL / β-TCP struts and electrospun PCL coated with collagen and HA for bone regeneration [ J ]. Chemistry of Materials, 2012, 24 ( 5 ): 903-913. [13] Jeon H, Lee M, Yun S, et al. Fabrication and characterization of 3D-printed biocomposite scaffolds based on PCL and silanated silica particles for bone tissue regeneration [ J ]. Chemical Engineering Journal, 2019, 360:519-530. [14] Khoshroo K, Jafarzadeh Kashi TS, Moztarzadeh F, et al. Development of 3D PCL microsphere / TiO2 nanotube composite scaffolds for bone tissue engineering[ J]. Materials Science and Engineering C, 2017, 70:586-598. [15] Kokubo T, Kim HM, Kawashita M. Novel bioactive materials with different mechanical properties[ J]. Biomaterials, 2003, 24 (13):2161-2175. [16] Li HC, Wang DG, Chen CZ. Effect of zinc oxide and zirconia on structure, degradability and in vitro bioactivity of wollastonite [J]. Ceramics International, 2015, 41(8):10160-10169. [17] Ramaswamy Y, Wu C, van Hummel A, et al. The responses of osteoblasts, osteoclasts and endothelial cells to zirconium modified calcium-silicate-based ceramic[J]. Biomaterials, 2008, 29(33):4392-4402. [18] Catauro M, Raucci M, Ausanio G, et al. Sol-gel processing of drug delivery zirconia / polycaprolactone hybrid materials [ J ]. Journal of Materials Science: Materials in Medicine, 2008, 19 (2):531-540. [19] Catauro M, Bollino F, Papale F, et al. Biological response of human mesenchymal stromal cells to titanium grade 4 implants coated with PCL / ZrO2 hybrid materials synthesized by sol-gel route:in vitro evaluation[ J]. Materials Science and Engineering C, 2014, 45:395-401. [20] G?tz HE, Müller M, Emmel A, et al. Effect of surface finish on the osseointegration of laser-treated titanium alloy implants [ J]. Biomaterials, 2004, 25(18):4057-4064. [21] Tsuruga E, Takita H, Itoh H, et al. Pore size of porous hydroxyapatite as the cell-substratum controls BMP-induced osteogenesis[ J ]. Journal of Biochemistry, 1997, 121 ( 2 ): 317-324. [22] Karageorgiou V, Kaplan D. Porosity of 3D biomaterial scaffolds and osteogenesis[J]. Biomaterials, 2005, 26(27):5474-5491. [23] Kasten P, Beyen I, Niemeyer P, et al. Porosity and pore size of β-tricalcium phosphate scaffold can influence protein production and osteogenic differentiation of human mesenchymal stem cells: an in vitro and in vivo study [ J]. Acta Biomaterialia, 2008, 4 (6):1904-1915. [24] Hutmacher DW. Scaffolds in tissue engineering bone and cartilage [J]. Biomaterials, 2001, 21(24):2529-2543. [25] Kumar A, Biswas K, Basu B. On the toughness enhancement in hydroxyapatite-based composites[ J]. Acta Materialia, 2013, 61(14):5198-5215.
|