设为首页 |  加入收藏
首页首页 期刊简介 消息通知 编委会 电子期刊 投稿须知 广告合作 联系我们
PCL / ZrO2 骨组织工程支架 3D 打印制备方法及其性能研究

Preparation and properties of PCL / ZrO2 bone tissue engineering scaffold based on 3D printing

作者: 王启帆  马志勇  钟林娜  谢雯佳  钱正  史耕田 
单位: 宁波大学机械工程与力学学院(浙江宁波 315211) 湖州师范学院工学院(浙江湖州 313000) 湖州艾先特电子科技有限公司(浙江湖州 313000) 四川大学华西口腔医院修复科(成都 610000) 通信作者:马志勇? E-mail:02641@ zjhu.edu.cn
关键词: 3D  打印;  骨组织工程支架;  聚己内酯;  氧化锆;  生物相容性 
分类号:R318
出版年·卷·期(页码):2020·39·4(418-424)
摘要:

目的 为制备出满足骨缺损修复需要的具有一定力学强度和生物活性的骨组织工程支架,本文选取聚己内酯(polycaprolactone, PCL)和纳米氧化锆( ZrO2 ) 粉末制备出三维多孔复合材料支架。方法 采用高温熔融挤出 3D 打印方式制备 PCL / ZrO2 复合材料支架,为获取支架的几何形态?力学性能和生物学性能,利用扫描电子显微镜( scanning electron microscope, SEM) 和万能试验机( material testsystem,MTS)分别分析了支架的形貌和压缩性能,并通过体外细胞培养的方式测试复合材料支架的生物相容性。结果 制备完成的复合材料支架具有良好的三维孔隙结构,孔径≥ 400 μm,孔隙率≥ 40 %? 对比纯 PCL 支架,PCL / ZrO2 复合材料支架的力学性能显著提高,杨氏模量提高 0倍左右,抗压强度提高0倍左右。在体外实验中,细胞培养 7 d 后 PCL / ZrO2 复合材料支架上的细胞增殖对比纯 PCL 支架有显著提高。 结论 基于该结果,本文制备出的 PCL / ZrO2 生物活性骨组织支架在骨组织工程方面有一定的应用前景。

【Abstract】 Objective In order to prepare bone tissue engineering scaffolds with certain mechanical strength and biological activity to meet the needs of bone defect repair, three-dimensional porous composite scaffolds were prepared by using polycaprolactone (PCL)and nano-zirconia ( ZrO2 ) powder. Methods The PCL /ZrO2 composite material support was prepared by high temperature melt extrusion 3D printing. The geometry, mechanical properties and biological properties of the scaffolds were obtained. The morphology and compression properties of the scaffolds were analyzed by scanning electron microscope (SEM) and material test system (MTS). The biocompatibility of the composite scaffold was tested by in vitro cell culture. Results The prepared composite scaffold had a good 3D pore structure, a pore diameter of ≥ 400 μm, and a porosity of ≥ 40%. Compared with the pure PCL stent, the mechanical properties of the PCL / ZrO2 composite stent were significantly improved, the Young’s modulus was increased by about 0.4 times, and the compressive strength was increased by about 0.5 times. In vitro, cell proliferation on the PCL /ZrO2 composite scaffold was significantly improved after 7 days of cell culture compared to the pure PCL scaffold. Conclusions Based on the results, the PCL / ZrO2 bioactive bone tissue scaffold prepared in this paper has certain application prospects in bone tissue engineering.

参考文献:

[ 1 ] Tang D, Tare RS, Yang LY, et al. Biofabrication of bone tissue: approaches, challenges and translation for bone regeneration[J]. Biomaterials, 2016, 83:363-382.

[ 2 ] Ji K, Wang Y, Wei Q, et al. Application of 3D printing technology in bone tissue engineering [ J ]. Bio-Design and Manufacturing, 2018, 1:203-210.

[ 3 ] Garrett B. 3D printing: new economic paradigms and strategic shifts[J]. Global Policy, 2014, 5(1):70-75.

[ 4 ] 张家彬, 马志勇, 陈宏庆, 等. 45S5 生物活性骨组织支架 3D打印制备及性能研究[ J]. 北京生物医学工程, 2018, 37(6):597-602, 610.

Zhang JB, Ma ZY, Chen HQ, et al. Fabrication and performance of 45S5 bioactive scaffold based on 3D printing [ J]. Beijing Biomedical Engineering, 2018, 37(6):597-602, 610.

[ 5 ] Ma H, Feng C, Chang J, et al. 3D - printed bioceramic scaffolds:from bone tissue engineering to tumor therapy[J]. Acta Biomaterialia, 2018, 79:37-59.

[ 6 ] Bose S, Vahabzadeh S, Bandyopadhyay A. Bone tissue engineering using 3D printing [ J]. Materials Today, 2013, 16 (12):496-504.

[ 7 ] Park J, Bauer S, von der Mark K, et al. Nanosize and vitality: TiO 2 nanotube diameter directs cell fate[J]. Nano Letters, 2007, 7(6):1686-1691.

[ 8 ] Navarro M, Aparicio C, Charles-Harris M, et al. Development of a biodegradable composite scaffold for bone tissue engineering: physicochemical, topographical, mechanical, degradation, and biological properties[M] / / Ordered Polymeric Nanostructures at Surfaces. Berlin:Springer-Verlag Berlin Heidelberg, 2006, 200: 209-231.

[ 9 ] Bártolo P, Bidanda B. Bio-materials and prototyping applications in medicine[M]. Berlin:Springer Nature Switzerland AG, 2008. 

[10] Qu X, Xia P, He J, et al. Microscale electrohydrodynamic printing of biomimetic PCL / nHA composite scaffolds for bone tissue engineering[J]. Materials Letters, 2016, 185:554-557.

[11] Huang B, Caetano G, Vyas C, et al. Polymer-ceramic composite scaffolds:the effect of hydroxyapatite and β-tri-calcium phosphate [J]. Materials(Basel), 2018, 11(1):129.

[12] Yeo MG, Kim GH. Preparation and characterization of 3D composite scaffolds based on rapid-prototyped PCL / β-TCP struts and electrospun PCL coated with collagen and HA for bone regeneration [ J ]. Chemistry of Materials, 2012, 24 ( 5 ): 903-913.

[13] Jeon H, Lee M, Yun S, et al. Fabrication and characterization of 3D-printed biocomposite scaffolds based on PCL and silanated silica particles for bone tissue regeneration [ J ]. Chemical Engineering Journal, 2019, 360:519-530.

[14] Khoshroo K, Jafarzadeh Kashi TS, Moztarzadeh F, et al. Development of 3D PCL microsphere / TiO2 nanotube composite scaffolds for bone tissue engineering[ J]. Materials Science and Engineering C, 2017, 70:586-598.

[15] Kokubo T, Kim HM, Kawashita M. Novel bioactive materials with different mechanical properties[ J]. Biomaterials, 2003, 24 (13):2161-2175.

[16] Li HC, Wang DG, Chen CZ. Effect of zinc oxide and zirconia on structure, degradability and in vitro bioactivity of wollastonite [J]. Ceramics International, 2015, 41(8):10160-10169.

[17] Ramaswamy Y, Wu C, van Hummel A, et al. The responses of osteoblasts, osteoclasts and endothelial cells to zirconium modified calcium-silicate-based ceramic[J]. Biomaterials, 2008, 29(33):4392-4402.

[18] Catauro M, Raucci M, Ausanio G, et al. Sol-gel processing of drug delivery zirconia / polycaprolactone hybrid materials [ J ]. Journal of Materials Science: Materials in Medicine, 2008, 19 (2):531-540.

[19] Catauro M, Bollino F, Papale F, et al. Biological response of human mesenchymal stromal cells to titanium grade 4 implants coated with PCL / ZrO2 hybrid materials synthesized by sol-gel route:in vitro evaluation[ J]. Materials Science and Engineering C, 2014, 45:395-401.

[20] G?tz HE, Müller M, Emmel A, et al. Effect of surface finish on the osseointegration of laser-treated titanium alloy implants [ J]. Biomaterials, 2004, 25(18):4057-4064.

[21] Tsuruga E, Takita H, Itoh H, et al. Pore size of porous hydroxyapatite as the cell-substratum controls BMP-induced osteogenesis[ J ]. Journal of Biochemistry, 1997, 121 ( 2 ): 317-324.

[22] Karageorgiou V, Kaplan D. Porosity of 3D biomaterial scaffolds and osteogenesis[J]. Biomaterials, 2005, 26(27):5474-5491.

[23] Kasten P, Beyen I, Niemeyer P, et al. Porosity and pore size of β-tricalcium phosphate scaffold can influence protein production and osteogenic differentiation of human mesenchymal stem cells: an in vitro and in vivo study [ J]. Acta Biomaterialia, 2008, 4 (6):1904-1915.

[24] Hutmacher DW. Scaffolds in tissue engineering bone and cartilage [J]. Biomaterials, 2001, 21(24):2529-2543.

[25] Kumar A, Biswas K, Basu B. On the toughness enhancement in hydroxyapatite-based composites[ J]. Acta Materialia, 2013, 61(14):5198-5215.

服务与反馈:
文章下载】【加入收藏
提示:您还未登录,请登录!点此登录
 
友情链接  
地址:北京安定门外安贞医院内北京生物医学工程编辑部
电话:010-64456508  传真:010-64456661
电子邮箱:llbl910219@126.com