设为首页 |  加入收藏
首页首页 期刊简介 消息通知 编委会 电子期刊 投稿须知 广告合作 联系我们
基于双心室电力学复合模型的心力衰竭仿真研究

A simulation study of heart failure based on a coupled biventricular electromechanical model

作者: 窦建洪  贾济  徐波  夏灵  王聪  吴凯  黄伟毅  董训德 
单位:1中国人民解放军南部战区总医院麻醉科(广州 510010) 2浙江大学生物医学工程系(杭州 310027) 3华南理工大学自动化科学与工程学院(广州 510641)
关键词: 虚拟心脏;  建模仿真;  心力衰竭;  束支阻滞;  心肌梗死 
分类号:R318.04
出版年·卷·期(页码):2020·39·5(441-455)
摘要:

目的 临床上束支传导阻滞(bundle branch block ,BBB)和心肌梗死(myocardial Infarction, MI)相互影响、同时并存,而国际上相关的心力衰竭(heart failur,HF)宏观数学模型很少见,多集中于电生理方面,且往往采用简单的几何形状和经验的心肌纤维旋向数据,不利于对真实心肌力学特性的研究。本研究旨在建立一个左束支传导阻滞(left bundle branch block ,LBBB)伴急性心肌梗死(acute heart failur ,AMI)的基于真实几何形状和纤维旋向数据的虚拟心脏HF模型,并定量地分析其力学特性。方法 首先利用CT数据和激光三维扫描点云相结合的方法,成功构建基于真实人体心脏结构的高精度几何模型;然后基于单域模型的心肌兴奋传播并行算法及八节点等参元法,建立双心室电力学复合模型;最后基于离子通道的心衰细胞模型,建立LBBB伴AMI的心衰数学模型。基于该模型,通过对心室壁运动的仿真来分析心室不同位置和梗塞范围对梗塞区膨展(infarct expansion ,IE)程度的影响;对心室赤道横断面应力的分析,研究心室内的应力分布特征及对力学收缩的影响;对左/右心室中壁最小主应变的仿真,定量研究室内的力学不同步。结果 通过对收缩期心壁的运动、主应变和应力分布的定量分析证明,LBBB伴AMI情况下前壁靠心尖部位要比后壁更易产生IE,且透壁性心梗范围越大,IE程度也越大;同时亦证明在LBBB存在时会有更为严重的左心室内的收缩不同步。结论 采用沿心肌纤维单元厚度方向分层的方法,我们利用等参元有限元法巧妙地将真实纤维旋向和几何形状融入双心室电力学复合HF模型,仿真结果与临床相符,证明该模型对理解心衰发生的机制具有重大意义。

Objective In clinic, bundle branch block (BBB) and myocardial infarction (MI) often occur simultaneously and interrelate. The macro-level mathematical models of heart failure (HF) are seldom found internationally, and the vast majority are electrophysiological computer models. Furthermore, previous cardiac models were constructed with simple geometry or fictive fiber orientations, which didn’t accord with true characteristics of heart mechanics. The purpose of this paper is to obtain the quantification of characteristics of ventricular mechanics based on the virtual heart model of human of HF caused by left bundle branch block (LBBB) complicated with acute heart failur(AMI)) including real geometry and myofiber orientations. Methods A high accuracy geometric model for a real human heart specimen was built with the combination of CT data and three-dimensional laser scanning point cloud data. After that, the electrical activation conduction sequences of ventricles were simulated based on the implementation of the parallel algorithms for monodomain model equations of myocardial excitation propagation. Then, using the finite element methods (FEM) with an eight-node isoparametric element, a biventricular electromechanical coupled model was built. Finally, the models of HF caused by LBBB complicated with AMI were constructed based on ionic-channel HF models of myocardium. The characteristics of ventricular mechanics based on the HF model were analyzed. First, analyze the influence of location and size of MI to the extent of infarct expansion (IE) through the simulation of ventricular wall motion. Then, the stress around equator site was calculated to study the distribution pattern of ventricular myocardial stress and the effects on the mechanical synchrony of contraction. Finally, the minimum principal strains of left/right ventriclar mid-wall were used to investigate the quantification of mechanical intraventricular asynchrony. Results Successfully simulated a failing heart with LBBB complicated by AMI. Then through the quantitative analyzation of ventricular motion, distributions of principal strain and stress during systole, it showed that IE occurred more in anterior wall near apex than in posterior wall, and larger transmural size may contribute a lot to the development of IE. Furthermore, we proved that more severe intraventricular systolic dyssynchrony of LV happened when LBBB existed. Conclusions By using multilayer division technology in the thickness direction of myofiber unit, a coupled electromechanical biventricular model of HF,including real geometry and fiber orientations, was subtly constructed by means of finite element method with an isoparametric element. The simulation was in agreement with clinical results. Therefore, it has great significance in understanding of the essence of HF diseases.

参考文献:

[1]  Mar PL, Devabhaktuni SR, Dandamudi G. His bundle pacing in heart failure-concept and current data [J]. Current Heart Failure Reports,2019,16(1):47-56.

[2]  Caporizzo MA, Chen CY, Bedi K, et al. Microtubules increase diastolic stiffness in failing human cardiomyocytes and myocardium [J]. Circulation,2020,141(11):902-915.

[3]  Henning RJ. Diagnosis and treatment of heart failure with preserved left ventricular ejection fraction [J]. World Journal of Cardiology,2020,12(1):7-25.

[4]  Kass DA. Pathobiology of cardiac dyssynchrony and resynchronization [J]. Heart Rhythm,2009,6(11):1660-1665.

[5]  Gallo D, Montanaro C, Morbiducci U. Computational modelling in congenital heart disease: Challenges and opportunities [J]. Cardiology,2019,276:116-117.

[6]  Heikhmakhtiar AK, Lim KM. Computational prediction of the combined effect of CRT and LVAD on cardiac electromechanical delay in LBBB and RBBB [J]. Computational and Mathematical Methods in Medicine,2018,2018:4253928.

[7]  Zhuan X, Luo X, Gao H, et al. A Novel Coupled agent-based and hyperelastic modelling of the left ventricle post-myocardial infarction [J]. International Journal for Numerical Methods in Biomedical Engineering,2019,35(1):e3155.

[8]  Janssen AM, Potyagaylo D, D?ssel O, et al. Assessment of the equivalent dipole layer source model in the reconstruction of cardiac activation times on the basis of BSPMs produced by an anisotropic model of the heart [J]. Medical & Biological Engineering & Computing,2018,56(6):1013-1025.

[9]  邓冬东. 虚拟心脏正常电生理的仿真及房颤的研究 [D].杭州:浙江大学,2012.

Deng DD. Simulation of normal electrophysilogy and atrial fibrillation with vitrual heart model [D]. Hangzhou:Zhejiang University,2012.

[10] Dou JH, Ouyang J, Xia L, et al. A mathematical model of human heart with detailed myofiber orientation and its application in the simulation of cardiac electrophysiology [J]. Journal of Investigative Medicine,2013,61(4):S13.

[11] Xia L, Huo M, Wei Q, et al. Analysis of cardiac ventricular wall motion based on a three-dimensional electromechanical biventricular model [J]. Physics in Medicine and Biology,2005,50(8):1901-1917.

[12] Sepulveda NG, Wikswo Jr JP . Bipolar Stimulation of Cardiac Tissue Using an Anisotropic Bidomain Model [J]. Journal of Cardiovascular Electrophysiology,1994,5(3):258-267.

[13] 刘锋. 左心室三维有限元力学模型的建立及其应用 [D].杭州:浙江大学,1999.

Liu F. Establishment and application of a three-dimensional finite element mechanical model of left ventricle [D]. Hangzhou:Zhejiang University,1999.

[14] 窦建洪. 基于犬双心室电力学复合模型的心力衰竭仿真研究 [D].杭州:浙江大学,2010.

Dou JH. A simulation study of heart failure based on a coupled biventricular electromechanical model of canine [D]. Hangzhou:Zhejiang University,2010.

[15]  张宇. 虚拟心脏解剖及电生理数学建模 [D].杭州:浙江大学,2009.

Zhang Y. Virtual heart: modeling of anatomy and electrophysiology [D]. Hangzhou:Zhejiang University,2009.

[16] 李景湧. 有限元法 [M].北京:北京邮电大学出版社,1999. 314.

Li JY. Finite Element Method [M].Beijing:Beijing University of Posts and Telecommunications Press,1999.314.

[17] Yang NI, Hung MJ, Cherng WJ, et al. Analysis of left ventricular changes after acute myocardial infarction using transthoracic real-time three-dimensional echocardiography [J]. Angiology,2008,59(6):688-694.

[18] Moustakidis P, Maniar HS, Cupps BP, et al. Altered left ventricular geometry changes the border zone temporal distribution of stress in an experimental model of left ventricular aneurysm: a finite element model study [J]. Circulation,2002,106(12 Suppl 1):I168-175.

[19] Koomalsingh KJ, McGarvey JR, Witschey WR, et al. Regional myocardial three-dimensional principal strains during postinfarction remodeling [J]. Annals of Thoracic Surgery,2015,99(3):770-778.

[20] Zhang P, Li T, Griffith BP, et al. Multiscale characterization of impact of infarct size on myocardial remodeling in an ovine infarct model [J]. Cells Tissues Organs,2015,200(5):349-362.

[21] Weisman HF and Healy B. Myocardial infarct expansion, infarct extension, and reinfarction: pathophysiologic concepts [J]. Progress in Cardiovascular Diseases,1987,30(2):73-110.

[22] Vernooy K, Verbeek XA, Peschar M, et al. Left bundle branch block induces ventricular remodelling and functional septal hypoperfusion [J]. European Heart Journal,2005,26(1):91-98.

[23] Kerckhoffs RC, McCulloch AD, Omens JH, et al. Effects of biventricular pacing and scar size in a computational model of the failing heart with left bundle branch block [J]. Medical Image Analysis,2009,13(2):362-369.

[24] 田亚琴,窦建洪,夏灵,et al.虚拟心脏仿真研究进展及其在临床中的应用 [J].北京生物医学工程,2018,37(5):159-164.

Tian YQ, Dou JH, Xia Ling, et al. Research progress of modern virtual heart simulation and its applications in clinic [J]. Beijing Biomedical Engineering,2018,37(5):159-164.

服务与反馈:
文章下载】【加入收藏
提示:您还未登录,请登录!点此登录
 
友情链接  
地址:北京安定门外安贞医院内北京生物医学工程编辑部
电话:010-64456508  传真:010-64456661
电子邮箱:llbl910219@126.com