[1] Brenner DJ , Elliston CD , Hall E J , et al. Estimated risk of radiation –induced fatal cancer from pediatric CT[J]. American Journal of Roentgenology, 2001, 176(2):289-296. [2] Naidich D. Low-dose CT of the lungs: preliminary observations[J]. Radiology, 1990, 175(3):729-31. [3] 崔学英. 低剂量CT的投影域去噪算法和后处理方法研究[D].太原:中北大学, 2015. Cui XY. Research on sinogram noise reduction method and post-processing approaches for low-dose CT[D]. Taiyuan:North University of China, 2015. [4] Karimi D , Deman P , Ward R , et al. A sinogram denoising algorithm for low-dose computed tomography[J]. BMC Medical Imaging, 2016, 16(1):11. [5] Gu S, Zhang L, Zuo W, et al. Weighted nuclear norm minimization with application to image denoising[C]// Computer Vision and Pattern Recognition. IEEE, 2014:2862-2869. [6] Buchanan AM, Fitzgibbon AW. Buchanan A M , Fitzgibbon A W . Damped Newton Algorithms for Matrix Factorization with Missing Data[C]// IEEE Computer Society Conference on Computer Vision & Pattern Recognition. IEEE, 2005:316-322. [7] Cai JF , Candès EJ, Shen ZW . A singular value thresholding algorithm for matrix completion[J]. SIAM Journal on Optimization, 2010, 20(4):1956-1982. [8] Donoho DL, Gavish M, Montanari A. The phase transition of matrix recovery from Gaussian measurements matches the minimax MSE of matrix denoising[J]. Proceedings of the National Academy of Sciences, 2013, 110(21):8405-8410. [9] Gao H, Cai J F, Shen Z, et al. Robust principal component analysis-based four-dimensional computed tomography[J]. Physics in Medicine and Biology, 2011, 56(11):3181-3198. [10] Cai JF, Jia X, Gao H, et al. Cine cone beam CT reconstruction using low-rank matrix factorization: algorithm and a proof-of-princple study[J]. IEEE Transactions on Medical Imaging, 2014, 33(8):1581-1591. [11]马海英,宣士斌,向顺灵.低秩矩阵在CT图像重建中的应用[J].广西民族大学学报(自然科学版),2016,22(3):86-92. Ma HY, Xuan SB, Xiang SL. Application of low rank matrix in ct image reconstruction[J]. Journal of Guangxi University for Nationalities (Natural Science Edition) ,2016,22(3):86-92. [12] Dabov K, Foi A, Katkovnik V, et al. Image denoising by sparse 3-D transform-domain collaborative filtering[J]. IEEE Transactions on Image Processing, 2007, 16(8):2080-2095. [13] Diwakar M, Kumar M. A review on CT image noise and its denoising[J]. Biomedical Signal Processing & Control, 2018, 42:73-88. [14] Zamyatin A, Krylov R, Shi B, et al. Adaptive multi-scale total variation minimization filter for low dose CT imaging [C]// SPIE. Physics of Medical Imaging.New York:Society of Photo-optical Instrumentation Engineers,2014:903426. [15] Chen Y , Shi L , Feng Q , et al. Artifact Suppressed Dictionary Learning for Low-Dose CT Image Processing[J]. IEEE Transactions on Medical Imaging, 2014, 33(12):2271-2292. [16] Bai T, Mou X, Xu Q, et al. Low-dose CT reconstruction based on multiscale dictionary[C]// SPIE. Physics of Medical Imaging.New York:Society of Photo-optical Instrumentation Engineers,2013. [17] Shi L, Chen Y,Shu H, et al. Low-dose CT image processing using artifact suppressed dictionary learning[C]. 2014 IEEE 11th International Symposium on Biomedical Imaging. Beijing:ISBI,2014:1127-1130. [18] 石路遥. 基于字典学习的低剂量CT图像处理方法[D].南京:东南大学,2015. Shi LY. Dictionary learning based low-dose CT image processing methods[D]. Nanjing:Southeast University, 2015. [19] Chen Y, Liu J, Hu Y, et al. Discriminative feature representation: an effective postprocessing solution to low dose CT imaging[J]. Physics in Medicine and Biology, 2017, 62(6):2103-2131. [20] Xu Q, Yu H, Mou X, et al. Low-dose X-ray CT reconstruction via dictionary learning[J]. IEEE Transactions on Medical Imaging, 2012, 31(9):1682-1697. [21] Chen Y, Yin X, Shi L, et al. Improving abdomen tumor low-dose CT images using a fast dictionary learning based processing[J]. Physics in Medicine and Biology, 2013, 58(16):5803-5820. [22] 张旭. 低剂量CT图像的后处理算法[D].太原:中北大学,2015. Zhang Xu, Low dose CT image post-processing algorithm[D]. Taiyuan:North University of China, 2015. [23] Chen H, Zhang Y, Zhang W, et al. Low-dose CT via convolutional neural network [J]. Biomedical Optics Express, 2017, 8(2): 679. [24] Chen H , Zhang Y , Kalra M K , et al. Low-dose CT with a residual encoder-decoder convolutional neural network [J]. IEEE Transactions on Medical Imaging, 2017,36(12): 2524-2535. [25] Yang W, Zhang H, Yang J, et al. Improving Low-Dose CT Image Using Residual Convolutional Network[J]. IEEE Access, 2017, 5:24698-24705. [26] Wu D , Kim K , Fakhri GE , et al. A cascaded convolutional neural network for X-ray low-dose ct image denoising[J/OL]. (2017-08-28). arXiv:1705.04267. https://arxiv.org/abs/1705.04267. [27] Wolterink JM , Leiner T , Viergever M A , et al. Generative adversarial networks for noise reduction in low-dose CT[J]. IEEE Transactions on Medical Imaging, 2017, 36(12):2536-2545. [28] Yang Q , Yan P , Zhang Y , et al. Low dose CT image denoising using a generative adversarial network with wasserstein distance and perceptual loss[J]. IEEE Transactions on Medical Imaging, 2018, 37(6): 1348-1357. [29] Yi X , Babyn P . Sharpness-aware low-dose CT denoising using conditional generative adversarial network[J]. Journal of Digital Imaging, 2018,31: 655–669. [30] Chun Jiao, Dongming Wang, Hongbing Lu, et al. Multiscale noise reduction on low-dose CT Sinogram by stationary wavelet transform[C]// 2008 IEEE Nuclear Science Symposium Conference Record.Dresden, Germany:IEEE, 2008: 5339-5344. [31] 刘进. 特征稀疏表示的低剂量CT成像方法研究[D].南京:东南大学,2018. Liu J, Feature sparse representation based low dose CT imaging[D]. Nanjing:Southeast University, 2018. [32] Chen Y, Liu J, Hu Y, et al. Discriminative feature representation: an effective postprocessing solution to low dose CT imaging[J]. Physics in Medicine and Biology, 2017, 62(6):2103-2131. [33] Zeng D, Huang J, Bian Z, et al. A simple low-dose X-ray CT simulation from high-dose scan[J]. IEEE Transactions on Nuclear Science, 2015, 62(5):2226-2233. [34] Sheikh H R, Bovik A C. Image information and visual quality[J]. IEEE Transactions on Image Processing, 2006, 15(2):430-444. [35] Wang Z, Bovik A, Sheich HR, et al. Image quality assessment: from error visibility to structural similarity[J].IEEE transactions on image processing : a publication of the IEEE Signal Processing Society, 2004, 13(4):600-612.
|