[1] DeBerardinis R J, Chandel N S. Fundamentals of cancer metabolism[J]. Science advances, 2016, 2(5): e1600200. [2] Luengo A, Gui D Y, Vander Heiden M G. Targeting metabolism for cancer therapy[J]. Cell chemical biology, 2017, 24(9): 1161-1180. [3] Pavlova N N, Thompson C B. The emerging hallmarks of cancer metabolism[J]. Cell metabolism, 2016, 23(1): 27-47. [4] Zhang C, Hua Q. Applications of genome-scale metabolic models in biotechnology and systems medicine[J]. Frontiers in physiology, 2016, 6: 413. [5] Agren R, Mardinoglu A, Asplund A, et al. Identification of anticancer drugs for hepatocellular carcinoma through personalized genome‐scale metabolic modeling[J]. Molecular systems biology, 2014, 10(3). [6] Gatto F, Miess H, Schulze A, et al. Flux balance analysis predicts essential genes in clear cell renal cell carcinoma metabolism[J]. Scientific reports, 2015, 5: 10738. [7] Gatto F, Ferreira R, Nielsen J. Pan-cancer analysis of the metabolic reaction network[J]. Metabolic engineering, 2020, 57: 51-62. [8] Brunk E, Sahoo S, Zielinski D C, et al. Recon3D enables a three-dimensional view of gene variation in human metabolism[J]. Nature biotechnology, 2018, 36(3): 272. [9] Vlassis N, Pacheco M P, Sauter T. Fast reconstruction of compact context-specific metabolic network models[J]. PLoS computational biology, 2014, 10(1): e1003424. [10] Ritchie M E, Phipson B, Wu D, et al. limma powers differential expression analyses for RNA-sequencing and microarray studies[J]. Nucleic acids research, 2015, 43(7): e47-e47. [11] Mardinoglu A, Agren R, Kampf C, et al. Genome-scale metabolic modelling of hepatocytes reveals serine deficiency in patients with non-alcoholic fatty liver disease[J]. Nature communications, 2014, 5: 3083. [12] Thiele I, Swainston N, Fleming R M T, et al. A community-driven global reconstruction of human metabolism[J]. Nature Biotechnology, 2013, 31(5): 419-425. [13] Sharma B, Kanwar S S. Phosphatidylserine: A cancer cell targeting biomarker[C]//Seminars in cancer biology. Academic Press, 2018, 52: 17-25. [14] Heirendt L, Arreckx S, Pfau T, et al. Creation and analysis of biochemical constraint-based models using the COBRA Toolbox v. 3.0[J]. Nature protocols, 2019, 14(3): 639. [15] Wang H, Marci?auskas S, Sánchez B J, et al. RAVEN 2.0: A versatile toolbox for metabolic network reconstruction and a case study on Streptomyces coelicolor[J]. PLoS computational biology, 2018, 14(10): e1006541. [16] Agren R, Mardinoglu A, Asplund A, et al. Identification of anticancer drugs for hepatocellular carcinoma through personalized genome‐scale metabolic modeling[J]. Molecular systems biology, 2014, 10(3). [17] Bidkhori G, Benfeitas R, Elmas E, et al. Metabolic network-based identification and prioritization of anti-cancer targets based on expression data in hepatocellular carcinoma[J]. Frontiers in physiology, 2018, 9: 916. [18] Vallabhapurapu S D, Blanco V M, Sulaiman M K, et al. Variation in human cancer cell external phosphatidylserine is regulated by flippase activity and intracellular calcium[J]. Oncotarget, 2015, 6(33): 34375. [19] Sikder M O F, Yang S, Ganapathy V, et al. The Na+/Cl?-Coupled, Broad-Specific, Amino Acid Transporter SLC6A14 (ATB 0,+): Emerging Roles in Multiple Diseases and Therapeutic Potential for Treatment and Diagnosis[J]. The AAPS journal, 2018, 20(1): 12. [20] Rozhkova A V, Zinovyeva M V, Sass A V, et al. Expression of sphingomyelin synthase 1 (SGMS1) gene varies in human lung and oesophagus cancer[J]. Molekuliarnaia biologiia, 2014, 48(3): 395-402. [21] Gomez-Cambronero J. Phospholipase D in cell signaling: from a myriad of cell functions to cancer growth and metastasis[J]. Journal of Biological Chemistry, 2014, 289(33): 22557-22566.
|