设为首页 |  加入收藏
首页首页 期刊简介 消息通知 编委会 电子期刊 投稿须知 广告合作 联系我们
群脑协作的协同式脑-机接口研究进展

Research progress of collaborative brain-computer interface for group brain collaboration

作者: 张力新  陈小翠  顾斌  陈龙  李岑博  明东 
单位:天津大学精密仪器与光电子工程学院(天津 300072);天津大学医学工程与转化医学研究院(天津 300072)
关键词: 协同脑-机接口;目标检测;运动控制;特征融合;决策融合 
分类号:R318.04
出版年·卷·期(页码):2020·39·5(535-541)
摘要:

传统的非侵入型脑-机接口(brain-computer interface,BCI)系统通常采用单人-单机架构,其信息传输速率较低且鲁棒性差,难以满足高精度、多指令、短时限等复杂作业的性能需求。随着传感和信息技术的迅速发展,面向多人-多机的协同式脑-机接口系统(collaborative BCI, cBCI)应运而生。cBCI可充分发挥群体智慧优势,深入挖掘群体神经响应信息,从而更高效地完成人-机交互作业。本文综述了cBCI的基本系统架构,并结合现有研究分析其在决策与控制两个应用场景下的作业特点,讨论了面向不同作业需求和系统架构的群体神经信息融合算法的优势与不足,展望了cBCI的系统优化方向与应用研究的发展趋势。

Traditional noninvasive brain-computer interface system usually adopt single-user and single-machine architecture. It’s difficult to meet the requirements of high accuracy, multiple instruction and short time delay, because of the low information transmission rate and poor robustness. With the development of sensing and information technology, the collaborative brain-computer interface based on multi-users and multi-machines has emerged. In order to complete the human- machine interaction work more efficiently, cBCI could give full play to the collective intelligence and deep digging in neural response information of group. This paper reviewed the basic architecture of the cBCI system and its application to decision-making and control. It also discussed the advantages and disadvantages of fusion algorithm for group neural response information. The system optimization direction and research trend of cBCI were proposed in the end.

参考文献:

[1] 张力新, 贾义红, 许敏鹏,等. 基于Chirplet变换的变频视觉诱发电位脑-机接口研究[J]. 纳米技术与精密工程, 2014,12(3):157-161. 

Zhang LX, Jia YH, Xu MP, et al. Chirp stimuli visual evoked potential based brain-computer interface by chirplet transform algorithm[J]. Nanotechnology and Precision Engineering, 2014,12(3)::157-161.

[2] Minguillon J, Lopez MA, Pelayo FJ. Trends in EEG-BCI for daily-life: requirements for artifact removal[J]. Biomedical Signal Processing & Control, 2017, 31(1):407-418.

[3] Abibullaev B, Zollanvari A. Learning discriminative spatiospectral features of ERPs for accurate brain-computer interfaces[J]. IEEE Journal of Biomedical and Health Informatics, 2019, 23(5):2009-2020.

[4] 许敏鹏, 张力新, 明东,等. 基于SSVEP阻断与P300特征的混合范式脑-机接口[J]. 电子学报, 2013, 41(11):2247-2251. 

Xu MP, Zhang LX, Ming D, et al. A hybrid BCI based on the combination of SSVEP blocking and P300 features[J]. Acta Electronica Sinica, 2013,41(11):2247-2251.

[5] 陈龙, 张磊, 王仲朋,等. 功能性电刺激对运动想象皮层活动的影响研究[J]. 仪器仪表学报, 2019, 40(2):75-81. 

Chen L, Zhang L, Wang ZP, et al. Research on the effect of FES on cortex activities of motor imagery[J]. Chinese Journal of Scientific Instrument, 2019, 40(2):75-81. 

[6] Miao Y, Yin E, Allison BZ, et al. An ERP-based BCI with peripheral stimuli: validation with ALS patients[J]. Cognitive Neurodynamics, 2019,14(1):21-33.

[7] 明东, 王坤, 何峰,等. 想象动作诱发生理信息检测及其应用研究:回顾与展望[J]. 仪器仪表学报, 2014, 35(9):1921-1931.

Ming D, Wang K, He F, et al. Study on physiological information detection and application evoked by motor imagery: Review and prospect[J]. Chinese Journal of Scientific Instrument, 2014, 35 (9): 1921-1931.

[8] Maksimenko V, Grubov V. ognitive interaction during a collaborative attentional task[C]// 2019 3rd School on Dynamics of Complex Networks and their Application in Intellectual Robotics . Innopolis, Russia: DCNAIR, 2019:119-121.

[9] Bang D, Frith CD. Making better decisions in groups[J]. Royal Society Open Science,2017, 4(8):170193.

[10] Le GS, Manzolli J, Verschure PFMJ. Disembodied and Collaborative Musical Interaction in the Multimodal Brain Orchestra[C]// Caramiaux, Baptiste, International Conference on New Interfaces for Musical Expression. Sydney, Australia:NIME,2010:309-314.

[11] Malone TW, Laubacher R, Dellarocas C. The collective intelligence genome[J]. IEEE Engineering Management Review, 2010, 38(3):38-52.

[12] Wang YJ, Jung TP. A collaborative brain-computer interface for improving human performance[J] .Plos One ,2011,6: e20422. 

[13] Matran-fernandez A, Poli R. Collaborative brain-computer interfaces for target localisation in rapid serial visual presentation[C]// 2014 6th Computer Science and Electronic Engineering Conference . Colchester:CEEC, 2014:127-132.

[14] 郑玉甫, 许敏鹏, 明东. 脑-机接口操控效果差异及其预测研究综述[J]. 中国生物医学工程学报, 2018, 37(6):112-118.

Zheng YF, Xu MP, Ming D. Research advancements on the variation and prediction of brain control performance for brain-computer interfaces(BCIs)[J]. Chinese Journal of Biomedical Engineering, 2018, 37 (6): 112-118.

[15] Kurvers RHJM, Herzog SM, Hertwig R, et al. Boosting medical diagnostics by pooling independent judgments[J]. Proceedings of the National Academy of Sciences, 2016, 113(31):8777-8782.

[16] Bhattacharyya S, Valeriani D, Cinel C, et al.Collaborative brain-computer interfaces to enhance group decisions in an outpost surveillance task [C]//2019 41st Annual International Conference of the IEEE Engineering in Medicine and Biology Society .Berlin, Germany:EMBC, 2019:3099-3102

[17] Hilchey MD, Antinucci V, Lamy D, et al. Is attention really biased toward the last target location in visual search? Attention, response rules, distractors, and eye movements[J]. Psychonomic Bulletin & Review, 2019(14):1-9.

[18] Valeriani D, Poli R, Cinel C. Enhancement of group perception via a collaborative brain-computer interface[J]. IEEE Transactions on Biomedical Engineering, 2016, 64(6):1238-1248.

[19] Hatamikia S, Nasrabadi AM. Subject independent BCI based on LTCCSP method and GA wrapper optimization[C]// Biomedical Engineering. 2015 22nd Iranian Conference on Biomedical Engineering  .Tehran : IEEE, 2016:405-409.

[20] Valeriani D, Poli R, Cinel C. A collaborative Brain-Computer Interface for improving group detection of visual targets in complex natural environments[C]. 2015 7th International IEEE/EMBS Conference on Neural Engineering (NER). Montpellier, France:IEEE,2015:25-28.

[21] Zhou YJ, Gu B, Dai TF, et al. A Multiuser Collaborative Strategy for MI-BCI System[C]// 2018 IEEE 23rd International Conference on Digital Signal Processing (DSP). Shanghai: IEEE, 2018:1-5.

[22] Touyama H. A collaborative BCI system based on P300 signals as a new tool for life log indexing[C]// 2014 IEEE International Conference on Systems, Man, and Cybernetics (SMC), San Diego, CA:IEEE, 2014: 2843-2846. 

[23] Yun K, Stoica A. Improved target recognition response using collaborative brain-computer interfaces[C]// 2016 IEEE International Conference on Systems, Man, and Cybernetics (SMC).Budapest:IEEE, 2016: 2220-2223. 

[24] Yuan P, Wang Y, Wu W, et al. Study on an online collaborative BCI to accelerate response to visual targets[C]// 2012 Annual International Conference of the IEEE Engineering in Medicine and Biology Society. San Diego, CA:IEEE, 2012: 1736-1739. 

[25] Kurvers RHJM, Herzog SM, Hertwig R, et al. Boosting medical diagnostics by pooling in-dependent judgments[J]. Proceedings of the Na-tional Academy of Sciences, 2016, 113(31):8777-8782.

[26] Solon A, Gordon S, Mcdaniel J, et al. Collaborative brain-computer interface for human interest detection in complex and dynamic settings[C]// 2018 IEEE International Conference on Systems, Man, and Cybernetics (SMC). Miyazaki, Japan:IEEE, 2018:970-975. 

[27] Yuan P, Wang YJ, Gao XR, et al. A collaborative brain-computer interface for accelerating human decision making[C]// Stephanidis C,Antona M. Proceedings of the 7th international conference on Universal Access in Human-Computer Interaction. Heidelberg, German :Springer-Verlag, 2013:672-681.

[28] Poli R, Valeriani D, Cinel C. Collaborative Brain-Computer Interface for Aiding Decision-Making[J]. Plos One, 2014, 9(7): e102693.

[29] Bianchi L, Gambardella F, Liti C, et al.Group study via collaborative BCI[C]// 2019 IEEE International Conference on Systems, Man and Cybernetics (SMC). Bari, Italy,:IEEE,2019: 272-276

[30] Kao AB, Couzin ID. Decision accuracy in complex environments is often maximized by small group sizes[J]. Proceedings of the Royal Society B: Biological Science, 2014,281(1784):20133305.

[31] 孙炳海, 冯小丹, 赵肖倩,等. 超扫描在社会互动脑机制研究中的应用:基于人际同步的视角[J]. 苏州大学学报(教育科学版), 2018, 6(4):38-47.

服务与反馈:
文章下载】【加入收藏
提示:您还未登录,请登录!点此登录
 
友情链接  
地址:北京安定门外安贞医院内北京生物医学工程编辑部
电话:010-64456508  传真:010-64456661
电子邮箱:llbl910219@126.com