设为首页 |  加入收藏
首页首页 期刊简介 消息通知 编委会 电子期刊 投稿须知 广告合作 联系我们
基于水平集方法的冠状动脉CT图像分割

Coronary CT image segmentation based on level set method

作者: 黄山  程晓光 
单位:北京积水潭医院放射科(北京 100035)
关键词: 水平集方法;  CT图像;  冠脉识别与分割;  FFRct;  临床应用 
分类号:R318.04
出版年·卷·期(页码):2020·39·6(569-573)
摘要:

目的 采用水平集方法实现对CT图像中冠状动脉的高效自动识别与分割,借此简化三维模型重建工作,从而提高FFRct整体的计算效率。方法 选取20名冠心病患者作为研究对象,提取26支狭窄冠脉血管的CT图像。分别利用水平集方法和手动方法对CT图像进行冠脉的识别与分割处理从而生成三维模型。利用CFD仿真方法分别获取各冠脉段的FFR数值,并通过Bland-Altman方法分析两种方法所得FFR的一致性,用以验证水平集方法在冠脉识别精度上与手动方法水平的差异。结果 对比了获取FFR数值两种冠脉识别方法整体所需的时间。与手动方法相比,水平集方法的模型重建时间减少了10倍以上。经检验,两种冠脉识别方法的FFR数值计算结果一致性良好。结论 基于水平集方法可以实现CT图像冠脉的高效自动识别,具有一定的临床应用意义。

Objective The level set method is used to realize efficient automatic identification and segmentation of coronary arteries in CT images, thereby simplifying the reconstruction of the three-dimensional model and improving the overall calculation efficiency of FFRct. Methods 20 patients with coronary heart disease were selected as the research objects, and CT images of 26 narrow coronary vessels were extracted. The level set method and manual method are used to identify and segment the coronary artery on CT images to generate a three-dimensional model. The CFD simulation method was used to obtain the FFR value of each coronary artery segment, and the consistency of the FFR obtained by the two methods was analyzed by the Bland-Altman method to verify the difference between the level set method in the coronary recognition accuracy and the manual method. Results The overall time required to obtain the FFR value of the two coronary artery identification methods was compared. Compared with the manual method, the model reconstruction time of the level set method is reduced by more than 10 times. After testing, the FFR numerical calculation results of the two coronary artery identification methods are in good agreement. Conclusions The level set method can realize the high-efficiency automatic identification of coronary artery in CT images, which has certain clinical application significance.

参考文献:

1.Tonino PA, De Bruyne B, Pijls NH, et al. Fractional flow reserve versus angiography for guiding percutaneous coronary intervention [J]. The New England Journal of Medicine,2009, 360(3): 213–224.
2.Pijls NHJ, Sels JWEM. Functional measurement of coronary stenosis[J]. Journal of the American College of Cardiology, 2012, 59(12): 1045–1057.
3.Pijls NH, De Bruyne B, Peels K, et al. Measurement of fractional flow reserve to assess the functional severity of coronary-artery stenoses[J]. The New England Journal of Medicine,1996, 334(26): 1703-1708.
4.Hlatky MA, Saxena A, Koo BK, et al. Projected costs and consequences of computed tomography-determined fractional flow reserve[J]. Clinical Cardiology, 2013, 36(12): 743–748.
5.Takeshi K, Hiroki S, Sachio K, et al. Cost analysis of non-invasive fractional flow reserve derived from coronary computed tomographic angiography in Japan [J]. Cardiovascular Intervention and Therapeutics, 2015, 30(1): 38–44.
6.Gaur S, Achenbach S, Leipsic J, et al. Rationale and design of the HeartFlowNXT ( HeartFlow analysis of coronary blood flow using CT angiography: next steps) study [J]. Journal of Cardiovascular Computed Tomography, 2013, 7(5): 279–288.
7.Kim KH, Doh JH, Koo BK, et al. A novel noninvasive technology for treatment planning using virtual coronary stenting and computed tomography-derived computed fractional flow reserve [J]. JACC: Cardiovascular Interventions, 2014, 7(1): 72–78.
8.De Geer J, Sandstedt M, Bj?rkholm A, et al. Software-based on-site estimation of fractional flow reserve using standard coronary CT angiography data[J]. Acta Radiologica, 2015, 95(2): 205–27.  2016,57(10): 1186-1192.
9.Tesche C, De Cecco CN, Caruso D, et al. Coronary CT angiography derived morphological and functional quantitative plaque markers correlated with invasive fractional flow reserve for detecting hemodynamically significant stenosis [J]. Journal of Cardiovascular Computed Tomography, 2016, 10(3): 199–206.
10.Grunau GL, Min JK, Leipsic J. Modeling of fractional flow reserve based on coronary CT angiography [J]. Current Cardiology Reports,2013, 15(1): 336.
11.Cheruvu C, Naoum C, Blanke P, et al. Beyond stenosis with fractional flow reserve via computed tomography and advanced plaque analyses for the diagnosis of lesion-specific ischemia [J]. Canadian Journal of Cardiology, 2016, 32(11): 1315.e1-1315.e9.
12.Taylor CA, Fonte TA, Min JK. Computational fluid dynamics applied to cardiac computed tomography for noninvasive quantification of fractional flow reserve?: scientific basis[J]. Journal of the American College of Cardiology, 2013, 61(22): 2233–2241.
13.Zarins CK, Taylor CA, Min JK. Computed fractional flow reserve (FFTCT) derived from coronary CT Angiography [J]. Journal of Cardiovascular Translational Research, 2013, 6(5): 708–714.
14.钱芸, 张英杰. 水平集的图像分割方法综述[J]. 中国图象图形学报,2008, 13(1): 7–13.
Qian Y, Zhang YJ. Level set methods and its application on image segmentation[J]. Journal of Image and Graphics, 2008, 13(1): 7–13.
15.龚永义, 罗笑南, 黄辉, 等. 基于单水平集的多目标轮廓提取[J]. 计算机学报, 2007, 30(1): 120–128.
Gong YY, Luo XN, Huang H, et al. [J]. Multi-objects extracted based on single level set[J]. Chinese Journal of Computers, 2007, 30(1): 120–128.
16.萨建, 刘桂芬. 定量测量结果的一致性评价及Bland-Altman法的应用[J]. 中国卫生统计, 2011, 28(4): 409–411, 413.
Sa J, Liu GF. Assessing the agreement of quantitative measurement data and the application of Bland-Altman method[J]. Chinese Journal of Health Statistics, 2011, 28(4): 409–411, 413.

服务与反馈:
文章下载】【加入收藏
提示:您还未登录,请登录!点此登录
 
友情链接  
地址:北京安定门外安贞医院内北京生物医学工程编辑部
电话:010-64456508  传真:010-64456661
电子邮箱:llbl910219@126.com