设为首页 |  加入收藏
首页首页 期刊简介 消息通知 编委会 电子期刊 投稿须知 广告合作 联系我们
基于原子力显微镜力曲线阵列模式获得兔角膜基质细胞弹性模量的方法研究

Study on methods of obtain elastic modulus of rabbit keratocytes by force volume model of AFM

作者: 陈昕妍  曾正  张海霞  李林 
单位:首都医科大学生物医学工程学院,临床生物力学应用基础研究北京市重点实验室(北京 100069)
关键词: 细胞弹性模量;  原子力显微镜;  力曲线阵列;  Snedden  模型;  角膜基质细胞 
分类号:R318.01
出版年·卷·期(页码):2020·39·6(574-581)
摘要:

目的 细胞的力学特性与自身的生物学特性及某些疾病息息相关,原子力显微镜(atomic force microscope, AFM)可提供多种扫描模式及测试方法,而关于细胞弹性模量的获得方法目前尚未统一,本研究拟探讨通过原子力显微镜力曲线阵列模式(force volume)获得细胞弹性模量的方法。方法 首先通过酶消化法提取正常兔眼角膜基质细胞,进行培养并通过波形蛋白(vimentin)免疫荧光染色进行鉴定。通过原子力显微镜力曲线阵列测试,选定9个100×100 μm2区域,获得每个区域均布的1 024点的力-压痕深度曲线,利用Snedden模型拟合曲线获得相应测试点弹性模量。结果 波形蛋白(vimentin)免疫荧光染色鉴定结果证实提取细胞免疫荧光波形蛋白鉴定阳性,确定细胞为角膜基质细胞。通过原子力显微镜测试得到每个区域约有3~5个完整细胞,拟合得到细胞的弹性模量中央与边缘处略有差别。细胞中央处拟合得弹性模量约为53.1 kPa±6.35 kPa。结论 原子力显微镜力曲线阵列模式可以较为简易方便地获得众多细胞数据,更为细致的获得细胞整体力学特性,有效地避免了实验操作与压入点不同带来的误差。

Objective The mechanical properties of cells are closely related to their biological characteristics and some diseases. AFM(atomic force microscope) provide several scan and test models, while there is no uniform method to obtain the elastic modulus of cells so far. In this study, the elastic modulus of cells was obtained by force volume model of AFM. Methods Normal rabbit keratocytes were extracted by enzyme digestion, then identified by Vimentin immunofluorescence staining. Through the force volume model of AFM, nine 100×100 μm2 regions were tested and the force-indent depth curves of 1024 points of each area were obtained. The elastic modulus was obtained through the fitting of force-indent depth curves via Snedden model. Results The immunofluorescence staining was positive, confirmed that the cell is keratocytes. There were about 3-5 complete cells in each tested region, and the elastic modulus of the cells was slightly different between the center and the edge area. The elastic modulus at the center of the cell was approximately 53.1 kPa±6.35 kPa. Conclusions The force volume model of AFM can obtain cell data in a simple and convenient way. And the overall mechanical properties of keratocytes are obtained in detail, which effectively avoids the errors caused by different experimental operations and pressing points.

参考文献:

1. Li YS, Chen J, Wang LL, et al. Experimental verification of the elastic formula for the aspirated length of a single cell considering the size and compressibility of cell during micropipette aspiration[J]. Annals of Biomedical Engineering, 2018, 46(7):1026–1037 .
2. Hassell JR, Birk DE. The molecular basis of corneal transparency[J]. Experimental Eye Research, 2010, 91(3):326-335.
3. Petroll WM, Miron-Mendoza M. Mechanical interactions and crosstalk between corneal keratocytes and the extracellular matrix[J]. Experimental Eye Research, 2015, 133:49-57.
4. 张海霞, 张迪, 秦晓, 等. 角膜生物力学特性研究进展[J]. 科技导报,2018, 36(13):23-29.
Zhang HX, ZhanG D, Qin X, et al. Progress of research on corneal biomechanical properties[J]. Science & Technology Review, 2018, 36(13): 23-29.
5. Zhang HX, Khan MA, Zhang D, et al. Corneal biomechanical properties after FS-LASIK with residual bed thickness less than 50% of the original corneal thickness[J]. Journal of Ophthalmology, 2018: 2752945.
6.于梦瑶,秦晓,张海霞,等,角膜胶原交联后应力重分布的有限元研究[J].北京生物医学工程,2019, 38(6):598-604.
Yu MY, Qin X, Zhang HX, et al. Finite element analysis of stress redistribution after corneal collagen cross-linking[J]. Beijing Biomedical Engineering, 2019, 38(6):598-604.
7. Kieβling TR, Herrera M, Nnetu KD, et al. Analysis of multiple physical parameters for mechanical phenotyping of living cells [J]. European Biophysics Journal, 2013, 42(5):383-394.
8. Iyer S, Woodworth CD, Gaikwad RM, et al. Towards nonspecific detection of malignant cervical cells with fluorescent silica beads[J]. Small, 2009, 5(20):2277-2284.
9. 王浩. 基于纳米镊子的细胞粘弹性测试方法研究[D]. 哈尔滨:哈尔滨工业大学, 2014.
  Wang H. Characterizing viscoelastic properties of the living cell with a probe nanotweezer [D]. Harbin: Harbin Institute of Technology, 2014.
10. Lim CT, Zhou EH, Li A, et al. Experimental techniques for single cell and single molecule biomechanics[J]. Materials Science and Engineering: C, 2006, 26(8):1278-1288
11. Bucchianico SD, Poma AM, Giardi MF, et al. Atomic force microscope nanolithography on chromosomes to generate single-cell genetic probes[J]. Journal of Nanobiotechnology, 2011, 9: 27.
12. Guilak F, Tedrow JR, Burgkart R. Viscoelastic properties of the cell nucleus[J]. Biochemical and Biophysical Research Communications, 2000, 269(3): 781-786.
13.Hochmuth RM. Micropipette aspiration of living cells[J]. Journal of Biomechanics, 2000, 33(1):15-22.
14.Dao M, Lim CT, Suresh S. Mechanics of the human red blood cell deformed by optical tweezers[J]. Journal of the Mechanics and Physics of Solids, 2003, 51(11-12): 2259-2280.
15.宋建民. 基于AFM的细胞核力学特性原位测试的研究[D]. 哈尔滨:哈尔滨工业大学, 2015.
  Song JM. In situ quantification of living cell nucleus mechanical propertity with atomic force microscope[D]. Harbin: Harbin Institute of Technology, 2015.
16. Binnig G, Garcia N, Rohrer H. Conductivity sensitivity of inelastic scanning tunneling microscopy[J]. Physical Review B Condensed Matter, 1985, 32(2):1336-1338.
17. Puntheeranurak T, Wildling L, Gruber HJ, et al. Ligands on the string: single-molecule AFM studies on the interaction of antibodies and substrates with the Na+-glucose co-transporter SGLT1 in living cells[J]. Journal of Cell Science, 2006, 119(14):2960-2967.
18. Yu J, Wang Q, Shi X, et al. Single-molecule force spectroscopy study of interaction between transforming growth factor β1 and its receptor in living cells[J]. The Journal of Physical Chemistry B, 2007, 111(48):13619-13625.
19. Chaudhuri O, Parekh SH, Lam WA, et al. Combined atomic force microscopy and side-view optical imaging for mechanical studies of cells[J]. Nature Methods, 2009, 6(5):383-392.
20. Liang X, Shi X, Ostrovidov S, et al. Probing stem cell differentiation using atomic force microscopy[J]. Applied Surface Science, 2016, 366: 254-259.
21. Lekka G. Discrimination between normal and cancerous cells using AFM[J]. Bionanoscience, 2016, 6(1):65-80.
22. Reich A, Meurer M, Eckes B, et al. Surface morphology and mechanical properties of fibroblasts from scleroderma patients[J]. Journal of Cellular and Molecular Medicine, 2009, 13(8B):1644-1652.
23.于洋, 李林, 李姗姗, 等. 大鼠小梁细胞的体外培养及弹性模量的测量[J]. 北京生物医学工程,2019,38(2):145-150.
Yu Y, Li L, Li SS, et al. Culture in vitro and stiffness measurement of rat trabecular meshwork cells[J]. Beijing Biomedical Engineering, 2019, 38(2):145-150.
24.Wang C, Li L, Liu Z. Experimental research on the relationship between the stiffness and the expressions of fibronectin proteins and adaptor proteins of rat trabecular meshwork cells[J]. BMC Ophthalmology, 2017, 17: 268.
25. Liu H, Wen J, Xiao Y, et al. In situ mechanical characterization of the cell nucleus by atomic force microscopy[J].ACS Nano, 2014, 8(4): 3821-3828.
26. Eghiaian F, Rigato A, Scheuring S. Structural, mechanical, and dynamical variability of the actin cortex in living cells[J]. Biophysical Journal, 2015, 108: 1330-1340.
27.李杰, 李霞, 谭少健, 等. 牛角膜基质细胞的两步酶消化法高效分离及体外培养观察[J]. 中华实验眼科杂志, 2011, 29(5): 398-401.
Li J, Li X, Tan SJ, et al. Efficient isolation of bovine keratocytes utilizing two step enzymatic digestion[J].Chinese Journal of Experimental Ophthalmology, 2011, 29(5): 398-401.
28.张璐, 李妍, 胡竹林. 角膜基质细胞的表型转化及其预防瘢痕形成的研究[J]. 国际眼科纵览, 2018, 42(3): 194-198.
Zhang L,Li Y, Hu ZL. Henotypic transformation of corneal stromal cells and prevention of scar formation[J]. International Review of Ophthalmology, 2018, 42(3): 194-198.
29.刘玉乔, 王亚宇, 史亮. 生理状态下人牙周膜成纤维细胞的原子力显微镜下的观察[J]. 牙体牙髓牙周病学杂志, 2018, 28(9):511-514, 524.
Liu YQ, Wang YY, Shi L. Observation of the morphology of living human periodontal ligament cells with atomic force microscope[J]. Chinese Journal of Conservative Dentistry, 2018, 28(9): 511-514, 524.
30.Radmacher M. Measuring the elastic properties of living cells by the atomic force microscope[J]. Methods in Cell Biology, 2002, 68: 67-90.
31.Dokukin ME, Sokolov I. On the measurements of rigidity modulus of soft materials in nanoindentation experiments at small depth[J]. Macromolecules, 2012, 45(10): 4277-4288.
32.Guo Q, Xia Y, Sandig M, et al. Characterization of cell elasticity correlated with cell morphology by atomic force microscope[J]. Journal of Biomechanics, 2012, 45(2): 304-309
33.严拓, 孙蓉, 邓华, 等. 角膜基质细胞在p(HEMA-MMA)改性前后的粘附率、形貌与力学性能变化[J]. 分析测试学报, 2010, 29(3): 232-236.
Yan T, Sun R, Deng H, et al. Attachment, morphology and biomechanical changes of keratocytes cultured on unmodified and modified p(HEMA-MMA) hydrogel[J]. Journal of Instrumental Analysis, 2010, 29(3): 232-236.
34.Raghunathan VK, Thomasy SM, Strфm MP, et al. Tissue and cellular biomechanics during corneal wound injury and repair[J]. Acta Biomaterialia, 2017, 58: 291-301.
35.栗亚. 基于纳米探针技术的NSCLC细胞表面形貌和力学特性研究[D]. 哈尔滨: 哈尔滨工业大学, 2013.
Li Y. Investigation of morphology and mechanical properties of NSCLC cells based on nano-indentation [D]. Harbin: Harbin Institute of Technology, 2013.
36.李淑萍. 基于AFM的细胞力学特性实验研究[D]. 哈尔滨: 哈尔滨工业大学, 2014.
Li SP. The research on mechanics properties of cells based on AFM[D]. Harbin: Harbin Institute of Technology, 2014.
37. Ursell TS, Nguyen J, Monds RD, et al. Rod-like bacterial shape is maintained by feedback between cell curvature and cytoskeletal localization[J]. Proceeding of the National Academy of Sciences of the United States of America, 2014, 111(11): E1025–E1034.

服务与反馈:
文章下载】【加入收藏
提示:您还未登录,请登录!点此登录
 
友情链接  
地址:北京安定门外安贞医院内北京生物医学工程编辑部
电话:010-64456508  传真:010-64456661
电子邮箱:llbl910219@126.com