设为首页 |  加入收藏
首页首页 期刊简介 消息通知 编委会 电子期刊 投稿须知 广告合作 联系我们
新型腰椎后路动态稳定系统的三维有限元分析

The three-dimensional finite element analysis of the dynamic stable system of the new lumbar spine

作者: 蒋帅  刘洋  陈元元  冯勇  袁文 
单位:海军军医大学第二附属医院脊柱外科(上海 200003)  海军军医大学第三附属医院骨科(上海 200438)  微创医疗器械(上海)有限公司(上海 201203)
关键词: 腰椎后路;  动态稳定系统;  生物力学;  三维有限元;  椎间盘;  内固定 
分类号:R318.04; R687.3
出版年·卷·期(页码):2021·40·1(24-30)
摘要:

目的 对新型腰椎后路动态稳定系统进行三维有限元分析,研究其在稳定节段及邻近节段的生物力学影响,为下腰痛的脊柱内植物的设计和应用提供参考。方法 基于正常腰椎有限元模型,构建腰椎不稳损伤模型,即腰椎切除腰4和腰5之间的双侧小关节、腰4椎板下1/2、后纵韧带,形成脊柱失稳模型,分别在失稳模型上进行坚强内固定系统和后路动态稳定系统,比较两种术式对手术节段和临近阶段的活动度、各个节段的弯曲刚度、椎间盘应力水平、前纵韧带应力水平及小关节韧带拉力的变化情况。结果 对内固定桥接节段(腰4/腰5)应用新型腰椎后路动态稳定系统和坚强内固定系统后,在屈伸、侧屈、轴向旋转方向上的活动度均明显减小,但坚强固定后活动度减小更明显,应用动态稳定系统活动度更接近于正常腰椎节段;腰4/腰5椎间盘最大应力均减小,但坚强固定后活动度减小更明显,应用动态稳定系统活动度更接近于正常腰椎节段;对邻近节段(腰3/腰4、腰5/S1)应用新型腰椎后路动态稳定系统和坚强内固定系统后,在屈伸、侧屈、轴向旋转方向上的活动度均有所增大,但坚强固定后活动度增加更明显,应用动态稳定系统邻近节段活动度更接近于正常腰椎节段;邻近节段椎间盘最大应力均增大,但坚强固定后增大更明显,应用动态稳定系统更接近于正常腰椎节段;应用腰椎内固定后,邻近节段的小关节应力峰值增大,并且应用腰椎坚强内固定模型的小关节应力增大更多;应用腰椎动态固定的模型邻近关节应力峰值更加接近完整腰椎模型。结论 新型腰椎后路动态稳定系统对比坚强内固定系统能够使失稳节段的活动更加接近于正常,减小邻近节段的活动度增加,减小邻近节段椎间盘及小关节压力,说明新型腰椎动态稳定系统达到设计要求。

Objective  A three-dimensional finite element analysis of the dynamic stability system of the new lumbar spine was studied, which also focused on the biomechanical effects of the stable segment and adjacent segment. Methods  Based on the finite element model of lumbar vertebra, the model of lumbar instability damage was constructed. With resection on the lumbar spine model between L4 and L5 on both sides of the small joints, waist 4 longitudinal ligament and vertebral plate under 1/2, a spinal instability model was built, on which a pedicle screw system and a posterior dynamic stabilization system were added respectively. Then we compared how they were influenced by surgical operation sections and adjacent stages of activity, the bending stiffness of each section, intervertebral disc stress levels, anterior longitudinal ligament stress levels and the changes of the small joint ligament strain. Results For internal fixation of bridge section (L4/L5), after the new lumbar posterior dynamic stabilization and rigid internal fixation systems were applied, the activity of it in the directions of flexion, lateral bending and axial rotation was significantly decreased, but the activity decreased more obviously under the posterior dynamic stabilization system while it was closer to the normal one under the lumbar posterior dynamic stabilization system; the maximum stress of L4/L5 intervertebral disc decreased, but the decrease of the activity degree of strong fixation was more obvious, whereas that of the dynamic stable system was more similar to the normal lumbar segment. For adjacent segment (L3/ L4, L5/S1), with application of the two systems, the activity of it in the directions of flexion, lateral bending and axial rotation has increased, but the activity increased more obviously under the posterior dynamic stabilization system while it was closer to the normal one under the lumbar posterior dynamic stabilization system; the maximum stress of intervertebral disc in adjacent segment increased, but the increase of the activity degree of strong fixation was more obvious, whereas that of the dynamic stable system was more similar to the normal lumbar segment. The stress peak of small joints in adjacent segment increased under the rigid internal fixation system with the stress of small joints increasing more while the stress peak of the adjacent joints was closer to the complete lumbar model under the lumbar posterior dynamic stabilization system. Conclusions  Compared with the strong internal fixation system, the new lumbar posterior dynamic stability system can make the instability of segmental activity closer to the normal, reduce the increase of adjacent segment activity as well as the pressure of adjacent segment disc and small joints, which suggests that the new lumbar dynamic stability system has met the design requirements.

参考文献:

[1] Panjabi MM.Clinical spinal instability and low back pain[J]. Journal of  Electromyography and Kinesiologyl,2003,13(4):371-379.

[2]Schulte TL, Hurschler C, Haversath M, et al. The effect of dynamic, semi-rigid implants on the range of motion of lumbar motion segments after decompression[J]. European Spine Journal,2008,17(8):1057-1065. 

[3]Cakir B, Carazzo C, Schmidt R,et al. Adjacent segment mobility after rigid and semirigid instrumentation of the lumbar spine[J]. Spine (Phila Pa 1976),2009,34(12):1287-1291.

[4]Beastall J, Karadimas E, Siddiqui M, et al. The Dynesys lumbar spinal stabilization system: a preliminary report on positional magnetic resonance imaging findings[J]. Spine (Phila Pa 1976),2007,32(6):685-690. 

[5]Kaner T, Sasani M, Oktenoglu T, et al. Dynamicstabilization of the spine: a new classification system[J].Turkish Neurosurgery,2010,20(2):205-215.

[6]Sudprasert W, Choovongkomol K, piyapromdee U, et al. Impact on neurological recovery of transforaminal debridement and interbody fusion versus transpedicular decompression in combination with pedicle screw instrumentation for treating thoracic and lumbar spinal tuberculosis [J]. Asian Spine Journal,2016, 10(3): 543-552.

[7]张加芳,郑召民,张奎渤,等.经皮置入式腰椎棘突间撑开器的生物力学测试[J].中国脊柱脊髓杂志,2011,21(2):129-132.

   Zhang JF, Zheng ZM, Zhang KB, et al. Biomechanical analysis of a novel percutaneously placed low profile interspinous device[J]. Chinese Journal of Spine and Spinal Cord,2011,21(2):129-132.

[8]Cai XY, Sun MS, Huang YP, et al. Biomechanical Effect of L4-L5 Intervertebral Disc Degeneration on the Lower Lumbar Spine: A Finite Element Study[J]. Orthopedic Surgery,2020,12(3):917-930. 

[9]Kim JS, Ali MH, Wydra F, et al. Characterization of degenerative human facet joints and facet joint capsular tissues[J].Osteoarthritis and Cartilage,2015,23(12):2242-2251. 

[10]F. Knutsson.The instability associated with disc degeneration in the lumbar spine[J].Acta Radiologica,1944,25:593–609.

[11] KirKaldy Willis WH,Farfan HF.Instability lumbarspine[J]. Clinical Orthopaedics and Related Research

,1982,440(165):110 123.

[12]Lee JC,Kim Y,Soh JW,et al. Risk factors of adjacent segment disease requiring surgery after lumbar spinal fusion: comparison of posterior lumbar interbody fusion and posterolateral fusion[J].Spine,2014,39(5):339-345.

[13]Varatharajah S, Charles YP, Buy X, et al. Update on the surgical management of Pott′s disease [J].Orthopaedics & Traumatology-Surgery & Research, 2014, 100(2):229-235.

[14]Fleege C,Rickert M,Rauschmann M.The PLIF and TLIF techniques.Indication,technique,advantages,and disadvantages[J].Orthopade,2015,44(2):114-123.

[15]张馨元,丁晓红,段朋云.基于骨骼材料分布特征的髋关节有限元模型建立及其应力分析[J].北京生物医学工程,2020,39(5):462-469.

Zhang XY, Ding XH, Duan PY.Hip joint finite element modeling and its stress analysis based on the distribution characteristics of bone materials[J].Beijing Biomedical Engineering,2020,39(5):462-469.

[16]李鹏祥,赵改平,宋燕美,等.腰椎双侧不同椎弓根螺钉固定的生物力学实验研究[J].北京生物医学工程,2018,37(5):474-480.

Li PX, Zhao GP, Song YM, et al.Biomechanical study on bilateral different pedicle screw fixation of lumbar vertebrae[J].Beijing Biomedical Engineering,2018,37(5):474-480.

[17]Kulduk A,Altun NS,Senkoylu A.Biomechanical comparison of effects of the Dynesys and Coflex dynamic stabilization systems on range of motion and loading characteristics in the lumbar spine: a finite element study[J/OL]. International Journal of Medical Robotics and Computer Assisted Surgery,2015,11(4):400-405.

[18]Kaner T, Dalbayrak S, Oktenoglu T, et al.Comparison of posterior dynamic and posteriorrigid transpedicular stabilization with fusion to treat degenerative spondylolisthesis[J]. Orthopedics,2010,33(5):1-9.


服务与反馈:
文章下载】【加入收藏
提示:您还未登录,请登录!点此登录
 
友情链接  
地址:北京安定门外安贞医院内北京生物医学工程编辑部
电话:010-64456508  传真:010-64456661
电子邮箱:llbl910219@126.com