设为首页 |  加入收藏
首页首页 期刊简介 消息通知 编委会 电子期刊 投稿须知 广告合作 联系我们
基于TGAM模块的便携式脑力疲劳检测系统

Design of portablemental fatigue detecting system based on TGAM module

作者: 杨荣  李增勇  魏鹏绪  王丽  张宁  宋亮 
单位:国家康复辅具研究中心,北京市老年功能障碍康复辅助技术重点实验室(北京 100176) 国家康复辅具研究中心附属康复医院(北京 100176)
关键词: TGAM脑电模块;  Java平台;  听觉诱发电位;  Android;  服务器;  脑力疲劳检测 
分类号:R318.04
出版年·卷·期(页码):2021·40·1(31-37)
摘要:

目的 现代社会中脑力劳动者脑力疲劳容易引发事故和心理疾病,设计一种便携式脑力疲劳检测系统及时检测脑力疲劳并提醒劳动者休息的具有重要的现实意义。方法在Android系统平台下,进行脑力疲劳检测系统的应用设计,主要包括分别脑电采集端、Android移动端、服务器端三个模块。系统首先通过脑电采集端进行听觉诱发EEG信号的采集,再将EEG信号通过Android移动端传输至服务器端,利用多种解析算法提取P300中P3b成分的幅值进行分析,最后将分析结果返回Android移动端。结果 脑电采集端可实现对EEG进行采集、放大、滤波及传输,并通过蓝牙模块传输至服务器端进行解析和疲劳评判。通过Android端可实现查看原始脑波、P300波形、疲劳评判结果以及历史数据,也可登陆服务器端查看原始脑电数据和数据处理结果。  结论 所构建的系统可以实时采集用户的脑电数据并进行P300波形分析,方便快捷的得到用户的脑力疲劳状态。未来将进一步优化算法模型,减轻个体差异性对准确度的影响。

Objective Mental fatigue of brain workers is likely to trigger accidents and mental illness in modern society. It is of great practical significance to detect mental fatigue and remind workers to rest in a timely and convenient manner. Methods A mental fatigue detection system is developed on Android platform, which mainly includes three modules: the EEG acquisition terminal, the Android mobile terminal, and the server. The auditory evoked EEG is collected through the EEG acquisition terminal. Then through the Android mobile terminal, EEG signal is transmitted to the server. The amplitude of P3b in the P300 is extracted and analyzed based on various analytic algorithms. Finally, the analysis result is returned to the Android mobile terminal. Results Through the EEG acquisition terminal, EEG is collected, amplified, filtered and transmitted to the server by Bluetooth module for analysis and fatigue evaluation. The raw brain wave, P300 wave, fatigue evaluation results and historical data can be viewed through the Android mobile terminal. The raw EEG and data processing results can also be viewed on the server. ConclusionsThis system can be used to realize the EEG data collection in real time and P300 wave analysis. The mental fatigue state of the user can be get conveniently and quickly. The optimization for the algorithm model will be carried out in further studies to reduce the impact of individual differences in accuracy.

参考文献:

[1] 陈泽龙,张少涵,张振昌. 基于Android平台的精神疲劳检测系统的设计与应用[J]. 医疗卫生装备,2019,40(12):28-32.

Chen ZL, Zhang SH, Zhang ZC. Design and application of mental fatigue detection system based on android platform[J]. Chinese Medical Equipment Journal, 2019, 40(12):28-32.

[2] Lal SK, Craig A, Boord P ,et al. Development of an algorithm for an eeg-based driver fatigue countermeature[J]. Journal of Safety Research, 2003,34(3):321-8.

[3] 王萍萍,梁晓峰,刘燕,等.基于Android平台的脑电日常监护系统设计及实现[J].计算机与数字工程, 2018,46(7):1452-1457.

Wang PP, Liang XF, Liu Y, et al. Design and implementation of eeg daily monitoring system based on android platform[J]. Computer & Digital Engineering, 2018, 46(7):1452-1457.

[4] 范晓丽,赵朝义,罗虹. 基于2-back任务下ERP特征的脑力疲劳客观评价研究[J]. 生物医学工程杂志,2018,35(6):837-844.

Fan XL, Zhao CY, Luo Hong. An event-related potential objective evaluation study of mental fatigue based on 2-back task[J]. Journal of Biomedical Engineering, 2018, 35(6):837-844.

[5]Chalder T, Berelowitz G, Pawl ikowska T, et al. Development of a fatigue scale[J].

Journal of Psychosomatic Research, 1993,37(2): 147-153.

[6] Ma Yongma, Tian Fuze, Zhao Qinglin, et al. Design and application of mental fatigue detection system using non-contace ECG and BCG measurement[C]. 2018 IEEE International Conference on Bioinformatics and Biomedicine, 2018.

[7] 乔延云. 基于脑疲劳的听觉诱发脑电特征分析[D]. 天津:河北工业大学,2015.

Qiao YY. Analyses of auditory evoked potentials features based on mental fatigue[D]. Tianjing:Hebei University of Technology, 2015.

[8] 李杨.基于MindWave的脑电信号分析方法研究[D].北京:北京工业大学,2014.

Li Y. EEG analysis method and application based on mindwave[D]. Beijing:Beijing University of Technology, 2014.

[9] 马进.健康青年脑力疲劳生理指标和认知功能的实验研究[D].西安:第四军医大学,2008.

Ma J. Experiment study assessment criteria for judging healthy youths’ physiological index and cognitive ability[D]. Xian Fourth Military Medical University, Xi’an, 2008.

[10] 刘建平,张崇,郑崇勋,等.基于多导脑电复杂性测度的脑疲劳分析[J].西安交通大学学报,2008,42(12):1555-1559.

Liu JP, Zhang C, Zheng CX, et al. Mental fatigue analysis based on complexity measure of multichannel electroencephalogram[J]. Journal of Xi’an Jiaotong University, 2008, 42(12):1555-1559.

[11] 张崇,郑崇勋,欧阳轶,等.基于脑电功率谱特征的脑力疲劳分析[J].航天医学与医学工程,2008,21(1):35-39.

Zhang C, Zheng CX, Ou YY, et al. Analysis of mental fatigue basing on power spectrum feature of eeg[J]. Space Medicine & Medical Engineering, 2008,21(1):35-39.

[12]宋国萍,张侃. 驾驶疲劳对听觉注意影响的ERP研究[J]. 心理科学, 2009,32(3):517-520.

Song GP, Zhang K. An ERP study of effects of driving fatigue on auditory attention [J]. Psychological Science,   2009, 32(3):517-520.

[13] 高建. 基于Android的稳态视觉诱发电位视觉刺激器的研究[D]. 天津:天津职业技术师范大学,2016.

Gao J. Study of steady-state visual evoked potential visual stimulator based on android[D]. Tianjin:Tianjin University of Technology and Education, 2016.

[14] 郝建会,杜巨豹,霍速. 利用事件相关电位探索三种听觉Oddball范式脑加工机制的研究[J].中国康复医学杂志,2017,32(6):613-617.

Hao JH, Du JB, Huo S. Using event-related potentials to explore processing mechanism of three auditory oddball paradigms in the brain[J]. Chinese Journal of Rehabilitation

Medicine, 2017,32(6):613-617.

[15] 董倩妍.基于空间听觉P300的脑机接口技术研究[D].广州:广州大学,2019,5.

Dong QY. Research on brain-computer interface technology based on spatial auditory p300[D]. Guangzhou:Guangzhou University, 2019.5.

[16]王丽,兰陟,杨荣,等. 基于核函数极限学习机和小波包变换的EEG 分类方法[J]. 北京生物医学工程, 2018,37(5):481-487.

Wang L, Lan Z, Yang R, et al. EEG classification algorithm based on kernel extreme learning machine and wavelet packet transform[J]. Beijing Biomedical Engineering, 2018,37(5):481-487.

[17]  席旭刚,武昊,罗志增.基于 EMD 自相关的表面肌电信号消噪方法[J].仪器仪表学

报,2014,35(11):2494-2500.

Xi XP, Wu H, Luo ZZ. De-noising method of the sEMG based on emd autocorrelation[J]. Chinese Journal of Scientific Instrument, 2014, 35(11):2494-2500.

[18] 杨荣,王丽,张秀峰,等. 基于听觉脑电的脑卒中康复实验模式研究,北京生物医学工程,2015,34(6):607 -611.

Yang R, Wang L, Zhang XF, et al. Experimental mode of stroke rehabilitation based on auditory eeg[J]. Beijing Biomedical Engineering, 2015,34(6):607- 611.

[19] 李含磊. 单次诱发脑电特征提取工具包及算法优化[D]. 北京:北京协和医学院,2017.

Li HL. Single-trial evoked potential extraction toolbox and algorithm optimization[D].Beijing:Peking Union Medical College, 2017,5.

[20] 徐宝国,彭思,宋爱国.基于运动想象脑电的上肢康复机器人[J].机器人,2011,33(3):307-313.

Xu BG, Peng S, Song AG. Upper-limb rehabilitation robot based on motor imagery eeg[J],Robot,2011,33(3): 307-313.

[21] 李宁宁. 基于Android的应用程序开发教程. 北京:电子工业出版社,2016:1-6.


服务与反馈:
文章下载】【加入收藏
提示:您还未登录,请登录!点此登录
 
友情链接  
地址:北京安定门外安贞医院内北京生物医学工程编辑部
电话:010-64456508  传真:010-64456661
电子邮箱:llbl910219@126.com