设为首页 |  加入收藏
首页首页 期刊简介 消息通知 编委会 电子期刊 投稿须知 广告合作 联系我们
基于多特征集成决策树算法的门诊需求预测

Outpatient demand forecasting based on multi-feature ensemble decision tree algorithm

作者: 彭俊  张肖建  徐超  谢勇  项薇  何达 
单位:宁波大学 机械工程与力学学院(浙江宁波315211) 宁波大学先进储能技术与装备研究院(浙江宁波315211)宁波市鄞州区妇幼保健院(浙江宁波315211)
关键词: 门诊需求预测;  多特征;  GBDT;  随机森林;  ARIMA 
分类号:R318.04
出版年·卷·期(页码):2021·40·1(68-73)
摘要:

目的 为了准确预测医疗门诊需求量,以便医院管理者科学分配关键医疗资源,提高服务效率,本文提出一种基于多特征集成决策树的医疗需求预测模型。方法 首先引入了机器学习算法中的梯度提升决策树(gradient boosting decision tree, GBDT)和随机森林(random forest, RF)。考虑外部因素对门诊人数的影响,根据宁波市某妇幼保健院的日产前检查人数的历史数据,引入前一天产前检查人数、时间、节假日、天气等特征,建立多特征日检查人数预测模型。预测结果与经典自回归移动平均模型(autoregressive integrated moving average model, ARIMA)模型进行对比。结果 GBDT、RF和ARIMA模型预测结果的平均绝对百分比误差(mean absolute percentage error, MAPE)分别是14.95%、17.16%、18.53%。结论 集成决策树模型在医疗需求预测中的有效性和可行性,并且预测精度较传统的ARIMA模型高。

Objective To predict accurately the demand for medical outpatients, a medical demand forecasting model based on multi-feature ensemble decision tree is proposed. Thus, hospital administrators can scientifically allocate key medical resources and improve service efficiency. Methods Gradient boosting decision tree and random forest (GBDT and RF) in machine learning algorithms were introduced. We considered the influence of external factors on the number of outpatients,according to the historical data of the number of daily prenatal check-ups in a maternal and child health care hospital in Ningbo, the characteristics of the number of prenatal check-ups, time, holidays, weather and other characteristics of the previous day were introduced to establish a prediction model for the number of daily check-ups with multiple characteristics .The prediction results were compared with the classical ARIMA model. Results The average absolute percentage errors of the GBDT , RF and ARIMA model predictions were 14.95%, 17.16%, and 18.53%, respectively.  Conclusions The effectiveness and feasibility of the ensemble decision tree model in medical demand forecasting is proven, and the prediction accuracy is higher than the traditional ARIMA model.

参考文献:

[1] 鲁翔,许年珍,袁永根,等.大型医院医疗流程和资源配置的仿真决策系统研究[J]. 中国医院管理,2005,25(01):10-13.

      Lu X,Xu NZ,Yuan YG,et al. Study on medical processes and resource disposition in township and municipal hospitals: a simulation of polcy-making[J]. Chinese Hospital Management,2005,25(01):10-13 

[2] 贺国光. ITS 系统工程导论[M]. 北京: 中国铁道出版社,2004

[3] Tandberg D, Qualls C. Time series forecasts of emergency department patient volume, length of stay, and acuity[J]. Annals of Emergency Medicine, 1994, 23(2):299-306.

[4] Asplin BR, Flottemesch TJ, Gordon BD. Developing models for patient flow and daily surge capacity research[J]. Academic Emergency Medicine Official Journal of the Society for Academic Emergency Medicine, 2014, 13(11):1109-1113.

[5] Batal H, Tench J, Mcmillan S, et al. Predicting patient visits to an urgent care clinic using calendar variables[J]. Academic Emergency Medicine, 2014, 8(1):48-53.

[6] 刁秀芳,李望晨.基于SVM模型和ARIMA模型在拟合病毒性肝炎发病率中的应用[J].现代预防医学,2017,44(09):1545-1548.

 Diao XF, Li WC. SVM-and ARIMA-based infectious disease forecasting[J]. Modern Preventive  Medicine,  2017, 44(9): 1545-1548.

[7] Gul M, Guneri A F. Forecasting patient length of stay in an emergency department by artificial neural networks[J]. Journal of Aeronautics & Space Technologies, 2015, 8(2):43-48.

[8] Yousefi M, Ferreira RP M, Yousefi M. A modeling approach for daily patient visits forecasting in an emergency department[C]// International Conference on Engineering Optimization - Iguassu Falls. Brazil:EngOpt, 2016:19-23.

[9] Qiao Z , Sun N , Li X , et al. Using machine learning approaches for emergency room visit prediction based on electronic health record data[J]. Studies in Health Technology and Informatics, 2018, 247:111-115.

[10] 郑凯文,杨超.基于迭代决策树(GBDT)短期负荷预测研究[J].贵州电力技术,2017,20(2):82-84+90.

 Zheng KW, Yang C. Research of short-term load forecasting based on gradient boosting decision tree (GBDT)[J]. Guizhou Electric Power Technology, 2017, 20(2):82-84,90.

[11] 丁聪,倪少权,吕红霞.基于梯度提升的城市轨道交通客流量预测分析[J].城市轨道交通研究,2018,21(9):60-63.

Ding C, Ni SQ, Lyu HX. Forecast and analysis of urban rail transit passenger flow based on gradient  boosting[J].Urban Mass Transit,2018,21(9):60-63.

[12] 蒋怡玥,董蜀黔,周淑敏.基于集成算法的路段短时行驶时间预测[J].山东科学,2018,31(4):118-125.

Jiang YY, Dong SQ, Zhou SM. Short term prediction of road travel time based on an ensemble algorithm[J].  Shandong Science,2018,31(4):118-125.

[13] Breiman L. Random forest[J]. Machine Learning. 2001, 45(1): 5-32.  

[14] Friedman JH. Greedy function approximation: a gradient boosting machine[J].The Annals of Statistics,2001,29( 5) : 1189-1232. 

[15] 李航.统计学习方法[M]北京:清华大学出版社,2012.

[16] Freund Y. Boosting a weak learning algorithm by majority[J]. Information and Computation. 1995, 121(2): 256-285.

服务与反馈:
文章下载】【加入收藏
提示:您还未登录,请登录!点此登录
 
友情链接  
地址:北京安定门外安贞医院内北京生物医学工程编辑部
电话:010-64456508  传真:010-64456661
电子邮箱:llbl910219@126.com