设为首页 |  加入收藏
首页首页 期刊简介 消息通知 编委会 电子期刊 投稿须知 广告合作 联系我们
脑部 PET 图像在阿尔茨海默病早期诊断中的应用

Application of brain PET images in the early diagnosis of Alzheimer's disease

作者: 林万云  杜民 
单位:福州大学物理与信息工程学院( 福州 350108 ) 福州大学福建省医疗器械和医药技术重点实验室( 福州 350108 )
关键词: 阿尔茨海默病;  ADNI数据库;  PET图像;  MR图像;  3D  CNN;  早期诊断 
分类号:R318
出版年·卷·期(页码):2021·40·2(174-180)
摘要:

目的 本研究使用脑部正电子发射型计算机断层显像(positron emission tomography, PET),并且设计了一个3D 卷积神经网络(convolutional neural networks, CNN),以实现对阿尔茨海默病(Alzheimer disease, AD)的早期诊断。方法 研究数据取自美国国立卫生研究院老年研究所的ADNI (Alzheimer’s Disease Neuroimaging Initiative)数据库,PET图像和磁共振(magnetic resonance,MR)图像均有收集并对数据进行相关预处理。为避免过早的下采样给模型性能带来不利的影响,设计了一个3D CNN模型,比较两种不同模态的数据在AD早期诊断中各自的优缺点。结果 使用本研究组设计的3D CNN模型在基于PET图像的AD早期诊断实验中,预测准确率、敏感度、特异度以及曲线下面积(area under curve,AUC)分别达到71.19%、79.29%、61.35%、71.09%,各项指标均大于使用相同模型但是使用MRI图像时的实验结果。此外,对本研究组的模型与计算机视觉中的经典模型VGG和ResNet使用相同数据进行对比实验,在许多评价指标上都要优于这两个对比模型。结论 使用脑部PET图像并结合3D CNN可以更好的利用3D图像的空间位置信息,更有效的提取特征,能对AD早期的病变情况有更准确高效的识别,有助于及时发现疾病并采取措施减缓病情,降低发病概率或推迟发病时间。

Objective In this study, we used positron emission tomography (PET) of the brain and designed a 3D convolutional neural networks (CNN) to achieve early diagnosis of Alzheimer's disease (AD). Methods Data were obtained from the Alzheimer's Disease Neuroimaging Initiative (ADNI) database. Both PET images and magnetic resonance (MR) images were collected and preprocessed. In order to avoid premature downsampling from affecting the model performance. We designed a 3D CNN model to compare the advantages and disadvantages of two different modal data in the early diagnosis of AD. Results Using our designed 3D CNN model in the early diagnosis experiment of AD based on PET images, the prediction accuracy, sensitivity, specificity and the area under curve (AUC) reached 71.19%, 79.29%, 61.35% and 71.09%, respectively. All indicators are greater than the experimental results when using the same model but using MRI images. Compared with VGG and ResNet, our model is better than these two models in many evaluation indicators. Conclusions Combining brain PET images and 3D CNN can make better use of the spatial position information of 3D images, extract features more effectively, and can more accurately and efficiently identify the pathological changes in the early stage of AD, which is helpful for timely detection of diseases. It can slow down the disease, reduce the probability of disease and delay the time of disease.

参考文献:

[1]?Burns A, Iliffe S.?Alzheimer’s disease [J]. BMJ, 2009, 338:?b158.

[2]?GBD 2015 Disease and Injury Incidence and Prevalence Collaborators.?Global, regional, and national incidence, prevalence, and years lived with disability for 310 diseases and injuries, 1990-2015: A systematic analysis for the Global Burden of Disease Study 2015[J]. The Lancet, 2016, 388(10053):1545-1602.

[3]?Teipel SJ, Grothe M, Lista S, et al. Relevance of Magnetic Resonance Imaging for Early Detection and Diagnosis of Alzheimer Disease[J].?The Medical Clinics of North America, 2013, 97(3):399-424.

[4]?Dubois B, Feldman H H, Jacova C, et al. Research criteria for the diagnosis of Alzheimer's disease: revising the NINCDS–ADRDA criteria[J]. The Lancet Neurology, 2007, 6(8): 734-746.

[5]?林伟铭,袁江南,冯陈伟,等.基于极限学习机的阿尔兹海默病辅助诊断[J].中国生物医学工程学报,2020,39(3):288-294.

Lin WM, Yuan JN, Feng CW,?et al. Computer-aided diagnosis of Alzheimer's disease based on extreme learning machine [J]. Chinese Journal of Biomedical Engineering,2020,39(3):?288-294.

[6]?陈斯鹏,高妮,田思佳,等.基于MR图像纹理特征的阿尔茨海默病分类模型[J].北京生物医学工程, 2017, 36(2): 134-138.

Chen SP, Gao N, Tian SJ, et?al. Classification model for Alzheimer disease based on texture features of MR images [J]. Beijing Biomedical Engineering, 2017,?36(2):?134-138.

[7]?Farooq A, Anwar S, Awais M, et al. A deep CNN based multi-class classification of Alzheimer's disease using MRI[C]//?2017 IEEE International Conference on Imaging systems and techniques (IST). Beijing: IEEE?Press, 2017: 1-6.

[8]?林伟铭, 高钦泉, 杜民. 卷积神经网络诊断阿尔兹海默症的方法[J]. 计算机应用, 2017, 37(12):3504-3508.

Lin WM, Gao QQ, Du M. Convolutional neural network based method for diagnosis of Alzheimer's disease [J].?Journal of Computer Applications,?2017,?37(12):?3504-3508.

[9]?Lin W, Tong T, Gao Q, et al. Convolutional neural networks-based MRI image analysis for the Alzheimer's disease prediction from mild cognitive impairment[J]. Frontiers in Neuroscience, 2018, 12:?777.

[10]?Tong T, Wolz R, Gao Q, et al. Multiple instance learning for classification of dementia in brain MRI[J]. Medical Image Analysis, 2014, 18(5):808-818.

[11]?Zhang J, Gao Y, Gao Y, et al. Detecting anatomical landmarks for fast Alzheimer's disease diagnosis[J]. IEEE Transactions on Medical Imaging, 2016, 35(12):?2524-2533.

[12]?Huang Y, Xu J, Zhou Y, et al. Diagnosis of Alzheimer’s disease via multi-modality 3D convolutional neural network[J]. Frontiers in Neuroscience, 2019, 13: 509.

[13]?Zu C, Jie B, Liu M, et al. Label-aligned multi-task feature learning for multimodal classification of Alzheimer's disease and mild cognitive impairment[J]. Brain Imaging and?Behavior, 2016, 10(4):1148-1159.

[14]?Zhuang X, Arridge S, Hawkes DJ, et al. A nonrigid registration framework using spatially encoded mutual information and free-form deformations[J]. IEEE Transactions on Medical Imaging, 2011, 30(10):?1819-1828.

[15]?Krizhevsky A, Sutskever I, Hinton GE. Imagenet classification with deep convolutional neural networks[C]// 25th International Conference on?Neural Information Processing Systems. Red Hook, NY :?Curran?Associates,?Inc. , 2012,1: 1097-1105.

[16]?Simonyan K, Zisserman A.?Very deep convolutional networks for large-scale image recognition[C/OL]//?the 3rd International Conference on Learning Representations (ICLR 2015). [2020-11-20]. https://arxiv.org/pdf/1409.1556.pdf.?????????????????

[17]?He K, Zhang X, Ren S, et al. Deep residual learning for image recognition[C]//?2016 IEEE Conference on Computer Vision and Pattern Recognition. ?Las Vegas, NV:?IEEE?Press, 2016: 770-778.

[18]?Kingma DP,?Ba?JL. Adam: a method for stochastic optimization[C/OL]// the 3rd International Conference on Learning Representations (ICLR 2015).?[2020-11-20]. ?https://arxiv.org/pdf/1412.6980.pdf.

[19]?Wen J, Thibeau-Sutre E, Diaz-Melo M, et al. Convolutional neural networks for classification of Alzheimer's disease: overview and reproducible evaluation[J]. Medical Image Analysis, 2020, 63: 101694.

[20]?B?ckstr?m K, Nazari M, Gu IYH, et al. An efficient 3D deep convolutional network for Alzheimer's disease diagnosis using MR images[C]//?2018 IEEE 15th International Symposium on Biomedical Imaging. Washington, DC: IEEE?Press,?2018:149-153.

[21]?Coimbra A, Williams DS, Hostetler ED. The role of MRI and PET/SPECT in Alzheimer's disease[J]. Current Topics in Medicinal Chemistry, 2006, 6(6): 629-647.

[22]?Lin W. Synthesizing Missing Data using 3D Reversible GAN for Alzheimer's Disease[C]// ?Proceedings of the 2020 International Symposium on Artificial Intelligence in Medical Sciences. 2020: 208-213.

Marcus C, Mena E, Subramaniam RM. Brain PET in the diagnosis of Alzheimer’s disease[J]. Clinical Nuclear Medicine, 2014, 39(10): e413-e422.

?

服务与反馈:
文章下载】【加入收藏
提示:您还未登录,请登录!点此登录
 
友情链接  
地址:北京安定门外安贞医院内北京生物医学工程编辑部
电话:010-64456508  传真:010-64456661
电子邮箱:llbl910219@126.com