设为首页 |  加入收藏
首页首页 期刊简介 消息通知 编委会 电子期刊 投稿须知 广告合作 联系我们
大动物节段性骨缺损模型的研究进展

Research progress of large animal segmental bone defect models

作者: 陈胡贵  覃建国  李理  石展英  潘浩波  李兵  崔旭 
单位:广西医科大学第四附属医院/柳州市工人医院(广西柳州 545005) 中国科学院院深圳先进技术研究院(广东深圳 518055)
关键词: 节段性骨缺损;  生物材料;  骨缺损修复;  动物模型 
分类号:R318
出版年·卷·期(页码):2021·40·2(203-208)
摘要:

四肢节段性骨缺损,尤其是临界尺寸节段性骨缺损的修复仍然是骨科最具挑战性的难题之一。人工骨材料逐渐取代自体骨及同种异体骨成为骨缺损修复的研究热点。为了评价人工骨材料作为骨缺损修复替代物的发展前景,有必要建立可重复且有效的节段性骨缺损动物模型,以便成功地探索和转化这一领域的新成果。尽管众多学者都致力该领域的研究,但目前尚无一种理想的大动物节段性骨缺损模型能完美模拟人类骨结构和力学特征。因此本文将重点介绍用于评价人工骨材料常用且有效的大动物节段性骨缺损模型的研究进展,对临界尺寸骨缺损大小的取值、常用建模动物的优缺点、节段性骨缺损模型的建立、骨材料的不同固定方法等方面进行综述,以促进大动物节段性骨缺损模型的优化改进。

The repair of segmental bone defects of extremities, especially those of critical size, is still one of the most challenging problems in orthopaedics. Artificial bone has gradually replaced autogenous bone and allogeneic bone to become the research focus of bone defect repair. In order to evaluate the development of artificial bone as a substitute for repairing bone defects, it is necessary to establish a reproducible and effective animal model of segmental bone defects in order to explore and transform the new achievements in this field. Although many researchers have been devoted to this field, there is not an ideal model of segmental bone defects in large animals that can perfectly simulate human bone structure and mechanical characteristics. Therefore, this article will focus on the evaluation of artificial bone materials commonly used and effective large animal segmental bone defects model of research progress. This article reviews the critical size of bone defect, the advantages and disadvantages of different modeling animals, the establishment of segmental bone defect model in large animals, and the different fixation methods of bone materials, to improve the model of segmental bone defect in large animals.

参考文献:

[1] Schmitz JP, Hollinger JO. The critical size defect as an experimental model for craniomandibulofacial nonunions [J]. Clinical Orthopaedics and Related Research, 1986 (205): 299-308.

[2] 吴航天, 赵行琪, 胡岩君,等. 骨折不愈合的诊断及治疗建议 [J]. 生物骨科材料与临床研究, 2019, 16(4): 33-36.

Wu HT, Zhao XQ, Hu YJ, et al. The diagnosis and treatment recommendations of bone nonunion[J].  Orthopaedic Biomechanics Materials and Clinical Study, 2019, 16(4): 33-36.

[3] Liu M, Lv Y. Reconstructing bone with natural bone graft: a review of in vivo studies in bone defect animal model [J]. Nanomaterials, 2018, 8(12): 999.

[4] Chadayammuri V, Hake M, Mauffrey C. Innovative strategies for the management of long bone infection: a review of the Masquelet technique [J]. Patient Safety in Surgery, 2015, 9: 32.

[5] 徐永清, 范新宇. Ilizarov技术和Masquelet技术在长骨大段骨缺损治疗中的应用比较 [J]. 中华创伤骨科杂志, 2019, 21(8): 733-736.

Xu YQ, Fan XY. Comparison of Ilizarov and Masquelet techniques in the treatment of long bone defects [J]. Chinese Journal of Orthopaedic Trauma, 2019, 21(8): 733-736.

[6] Mcgovern JA, Griffin M, Hutmacher DW. Animal models for bone tissue engineering and modelling disease [J]. Disease Models & Mechanisms, 2018, 11(4): 033084.

[7] Kirby GTS, White LJ, Steck R, et al. Microparticles for sustained growth factor delivery in the regeneration of critically-sized segmental tibial bone defects [J]. Materials, 2016, 9(4): 259.

[8] Christou C, Oliver RA, Pelletier MH, et al. Ovine model for critical-size tibial segmental defects [J]. Comparative Medicine, 2014, 64(5): 377-385.

[9] Lammens J, Maréchal M, Geris L, et al. Warning about the use of critical-size defects for the translational study of bone repair: analysis of a sheep tibial model [J]. Tissue Engineering Part C-methods, 2017, 23(11): 694-699.

[10] Honnami M, Choi S, Liu IL, et al. Repair of segmental radial defects in dogs using tailor-made titanium mesh cages with plates combined with calcium phosphate granules and basic fibroblast growth factor-binding ion complex gel [J]. Journal of Artificial Organs, 2017, 20(1): 91-98.

[11] Kim Y, Kang BJ, Kim WH, et al. Evaluation of mesenchymal stem cell sheets overexpressing BMP-7 in canine critical-sized bone defects [J]. International Journal of Molecular Sciences, 2018, 19(7): 2073.

[12] Lin CC, Lin SC, Chiang CC, et al. Reconstruction of bone defect combined with massive loss of periosteum using injectable human mesenchymal stem cells in biocompatible ceramic scaffolds in a porcine animal model [J]. Stem Cells International, 2019, 2019: 6832952.

[13] Chu W, Gan Y, Zhuang Y, et al. Mesenchymal stem cells and porous beta-tricalcium phosphate composites prepared through stem cell screen-enrich-combine(-biomaterials) circulating system for the repair of critical size bone defects in goat tibia [J]. Stem Cell Research & Therapy, 2018, 9: 157.

[14] Ben-David D, Fishman B, Rubin G, et al. Autologous cell-coated particles for the treatment of segmental bone defects-a new cell therapy approach [J]. Journal of Orthopaedic Surgery and Research, 2019, 14: 198.

[15] Bigham-Sadegh A, Oryan A. Selection of animal models for pre-clinical strategies in evaluating the fracture healing, bone graft substitutes and bone tissue regeneration and engineering [J]. Connective Tissue Research, 2015, 56(3): 175-194.

[16] Wang X, Mabrey JD, Agrawal CM. An interspecies comparison of bone fracture properties [J]. Bio-Medical Materials and Engineering, 1998, 8(1): 1-9.

[17] Thorwarth M, Schultze-Mosgau S, Kessler P, et al. Bone regeneration in osseous defects using a resorbable nanoparticular hydroxyapatite [J]. Journal of Oral Maxillofacial Surgery, 2005, 63(11): 1626-1633.

[18] Schlegel KA, Lang FJ, Donath K, et al. The monocortical critical size bone defect as an alternative experimental model in testing bone substitute materials [J]. Oral Surgery, Oral Medicine, Oral Pathology, Oral Radiology, and Endodontology, 2006, 102(1): 7-13.

[19] Taylor WR, Ehrig RM, Heller MO, et al. Tibio-femoral joint contact forces in sheep [J]. Journal of Biomechanics, 2006, 39(5): 791-798.

[20] Reichert JC, Saifzadeh S, Wullschleger ME, et al. The challenge of establishing preclinical models for segmental bone defect research [J]. Biomaterials, 2009, 30(12): 2149-2163.

[21] Sparks DS, Saifzadeh S, Savi FM, et al. A preclinical large-animal model for the assessment of critical-size load-bearing bone defect reconstruction [J]. Nature Protocols, 2020,15(3): 877-942.

[22] 贾军锋, 唐承杰, 乐劲涛,等. 胫骨远端骨折3种不同固定方式的有限元分析 [J]. 中国组织工程研究, 2019, 23(32): 5188-5194.

Jia JF, Tang CJ, Yue JT, et al. Finite element analysis of three different fixation methods for distal tibial fracture[J]. Chinese Journal of Tissue Engineering Research, 2019, 23(32): 5188-5194.

[23] R?derer G, Gebhard F, Duerselen L, et al. Delayed bone healing following high tibial osteotomy related to increased implant stiffness in locked plating [J]. Injury, 2014, 45(10): 1648-1652.

[24] Wagels M, Rowe D, Senewiratne S, et al. Soft tissue reconstruction after compound tibial fracture: 235 cases over 12 years [J]. Journal of Plastic, Reconstructive & Aesthetic Surgery, 2015, 68(9): 1276-1285.

[25] Tufekci P, Tavakoli A, Dlaska C, et al. Early mechanical stimulation only permits timely bone healing in sheep [J]. Journal of Orthopaedic Research, 2017, 36(6): 1790-1796.

[26] Pobloth AM, Schell H, Petersen A, et al. Tubular open‐porous β‐tricalcium phosphate polycaprolactone scaffolds as guiding structure for segmental bone defect regeneration in a novel sheep model [J]. Journal of Tissue Engineering and Regenerative Medicine, 2018, 12(4): 897-911.

[27] Ebraheim NA, Evans B, Liu X, et al. Comparison of intramedullary nail, plate, and external fixation in the treatment of distal tibia nonunions [J]. International Orthopaedics, 2017, 41(9): 1925-1934.

[28] Haubruck P, Ober J, Heller R, et al. Complications and risk management in the use of the reaming-irrigator-aspirator (RIA) system: RIA is a safe and reliable method in harvesting autologous bone graft [J]. PLoS One, 2018, 13(4): e0196051.

[29] Christou C, Oliver RA, Yu Y, et al. The Masquelet technique for membrane induction and the healing of ovine critical sized segmental defects [J]. PLoS One, 2014, 9(12): e114122.

[30] Augat P, von Rüden C. Evolution of fracture treatment with bone plates [J]. Injury, 2018, 49(Suppl 1): S2-S7.

[31] Bottlang M, Tsai S, Bliven EK, et al. Dynamic stabilization with active locking plates delivers faster, stronger, and more symmetric fracture-healing [J]. The Journal of Bone and Joint Surgery, 2016, 98(6): 466-474.

 


服务与反馈:
文章下载】【加入收藏
提示:您还未登录,请登录!点此登录
 
友情链接  
地址:北京安定门外安贞医院内北京生物医学工程编辑部
电话:010-64456508  传真:010-64456661
电子邮箱:llbl910219@126.com