[1] Schmitz JP, Hollinger JO. The critical size defect as an experimental model for craniomandibulofacial nonunions [J]. Clinical Orthopaedics and Related Research, 1986 (205): 299-308. [2] 吴航天, 赵行琪, 胡岩君,等. 骨折不愈合的诊断及治疗建议 [J]. 生物骨科材料与临床研究, 2019, 16(4): 33-36. Wu HT, Zhao XQ, Hu YJ, et al. The diagnosis and treatment recommendations of bone nonunion[J]. Orthopaedic Biomechanics Materials and Clinical Study, 2019, 16(4): 33-36. [3] Liu M, Lv Y. Reconstructing bone with natural bone graft: a review of in vivo studies in bone defect animal model [J]. Nanomaterials, 2018, 8(12): 999. [4] Chadayammuri V, Hake M, Mauffrey C. Innovative strategies for the management of long bone infection: a review of the Masquelet technique [J]. Patient Safety in Surgery, 2015, 9: 32. [5] 徐永清, 范新宇. Ilizarov技术和Masquelet技术在长骨大段骨缺损治疗中的应用比较 [J]. 中华创伤骨科杂志, 2019, 21(8): 733-736. Xu YQ, Fan XY. Comparison of Ilizarov and Masquelet techniques in the treatment of long bone defects [J]. Chinese Journal of Orthopaedic Trauma, 2019, 21(8): 733-736. [6] Mcgovern JA, Griffin M, Hutmacher DW. Animal models for bone tissue engineering and modelling disease [J]. Disease Models & Mechanisms, 2018, 11(4): 033084. [7] Kirby GTS, White LJ, Steck R, et al. Microparticles for sustained growth factor delivery in the regeneration of critically-sized segmental tibial bone defects [J]. Materials, 2016, 9(4): 259. [8] Christou C, Oliver RA, Pelletier MH, et al. Ovine model for critical-size tibial segmental defects [J]. Comparative Medicine, 2014, 64(5): 377-385. [9] Lammens J, Maréchal M, Geris L, et al. Warning about the use of critical-size defects for the translational study of bone repair: analysis of a sheep tibial model [J]. Tissue Engineering Part C-methods, 2017, 23(11): 694-699. [10] Honnami M, Choi S, Liu IL, et al. Repair of segmental radial defects in dogs using tailor-made titanium mesh cages with plates combined with calcium phosphate granules and basic fibroblast growth factor-binding ion complex gel [J]. Journal of Artificial Organs, 2017, 20(1): 91-98. [11] Kim Y, Kang BJ, Kim WH, et al. Evaluation of mesenchymal stem cell sheets overexpressing BMP-7 in canine critical-sized bone defects [J]. International Journal of Molecular Sciences, 2018, 19(7): 2073. [12] Lin CC, Lin SC, Chiang CC, et al. Reconstruction of bone defect combined with massive loss of periosteum using injectable human mesenchymal stem cells in biocompatible ceramic scaffolds in a porcine animal model [J]. Stem Cells International, 2019, 2019: 6832952. [13] Chu W, Gan Y, Zhuang Y, et al. Mesenchymal stem cells and porous beta-tricalcium phosphate composites prepared through stem cell screen-enrich-combine(-biomaterials) circulating system for the repair of critical size bone defects in goat tibia [J]. Stem Cell Research & Therapy, 2018, 9: 157. [14] Ben-David D, Fishman B, Rubin G, et al. Autologous cell-coated particles for the treatment of segmental bone defects-a new cell therapy approach [J]. Journal of Orthopaedic Surgery and Research, 2019, 14: 198. [15] Bigham-Sadegh A, Oryan A. Selection of animal models for pre-clinical strategies in evaluating the fracture healing, bone graft substitutes and bone tissue regeneration and engineering [J]. Connective Tissue Research, 2015, 56(3): 175-194. [16] Wang X, Mabrey JD, Agrawal CM. An interspecies comparison of bone fracture properties [J]. Bio-Medical Materials and Engineering, 1998, 8(1): 1-9. [17] Thorwarth M, Schultze-Mosgau S, Kessler P, et al. Bone regeneration in osseous defects using a resorbable nanoparticular hydroxyapatite [J]. Journal of Oral Maxillofacial Surgery, 2005, 63(11): 1626-1633. [18] Schlegel KA, Lang FJ, Donath K, et al. The monocortical critical size bone defect as an alternative experimental model in testing bone substitute materials [J]. Oral Surgery, Oral Medicine, Oral Pathology, Oral Radiology, and Endodontology, 2006, 102(1): 7-13. [19] Taylor WR, Ehrig RM, Heller MO, et al. Tibio-femoral joint contact forces in sheep [J]. Journal of Biomechanics, 2006, 39(5): 791-798. [20] Reichert JC, Saifzadeh S, Wullschleger ME, et al. The challenge of establishing preclinical models for segmental bone defect research [J]. Biomaterials, 2009, 30(12): 2149-2163. [21] Sparks DS, Saifzadeh S, Savi FM, et al. A preclinical large-animal model for the assessment of critical-size load-bearing bone defect reconstruction [J]. Nature Protocols, 2020,15(3): 877-942. [22] 贾军锋, 唐承杰, 乐劲涛,等. 胫骨远端骨折3种不同固定方式的有限元分析 [J]. 中国组织工程研究, 2019, 23(32): 5188-5194. Jia JF, Tang CJ, Yue JT, et al. Finite element analysis of three different fixation methods for distal tibial fracture[J]. Chinese Journal of Tissue Engineering Research, 2019, 23(32): 5188-5194. [23] R?derer G, Gebhard F, Duerselen L, et al. Delayed bone healing following high tibial osteotomy related to increased implant stiffness in locked plating [J]. Injury, 2014, 45(10): 1648-1652. [24] Wagels M, Rowe D, Senewiratne S, et al. Soft tissue reconstruction after compound tibial fracture: 235 cases over 12 years [J]. Journal of Plastic, Reconstructive & Aesthetic Surgery, 2015, 68(9): 1276-1285. [25] Tufekci P, Tavakoli A, Dlaska C, et al. Early mechanical stimulation only permits timely bone healing in sheep [J]. Journal of Orthopaedic Research, 2017, 36(6): 1790-1796. [26] Pobloth AM, Schell H, Petersen A, et al. Tubular open‐porous β‐tricalcium phosphate polycaprolactone scaffolds as guiding structure for segmental bone defect regeneration in a novel sheep model [J]. Journal of Tissue Engineering and Regenerative Medicine, 2018, 12(4): 897-911. [27] Ebraheim NA, Evans B, Liu X, et al. Comparison of intramedullary nail, plate, and external fixation in the treatment of distal tibia nonunions [J]. International Orthopaedics, 2017, 41(9): 1925-1934. [28] Haubruck P, Ober J, Heller R, et al. Complications and risk management in the use of the reaming-irrigator-aspirator (RIA) system: RIA is a safe and reliable method in harvesting autologous bone graft [J]. PLoS One, 2018, 13(4): e0196051. [29] Christou C, Oliver RA, Yu Y, et al. The Masquelet technique for membrane induction and the healing of ovine critical sized segmental defects [J]. PLoS One, 2014, 9(12): e114122. [30] Augat P, von Rüden C. Evolution of fracture treatment with bone plates [J]. Injury, 2018, 49(Suppl 1): S2-S7. [31] Bottlang M, Tsai S, Bliven EK, et al. Dynamic stabilization with active locking plates delivers faster, stronger, and more symmetric fracture-healing [J]. The Journal of Bone and Joint Surgery, 2016, 98(6): 466-474.
|