设为首页 |  加入收藏
首页首页 期刊简介 消息通知 编委会 电子期刊 投稿须知 广告合作 联系我们
医学图像深度学习处理方法的研究进展

Research progress of deep learning processing methods for medical images

作者: 佟超  韩勇  冯巍  李伟铭  陶丽新  郭秀花 
单位:首都医科大学公共卫生学院(北京100069) 临床流行病学北京市重点实验室(北京100069)
关键词: 医学图像;  特征提取;  分割诊断;  深度学习 
分类号:R318.01
出版年·卷·期(页码):2021·40·2(198-202)
摘要:

由于医学图像数据爆炸式增长,传统依靠医生人工对医学图像进行分析诊断,医生易出现疲劳,不仅工作效率低下,工作量大,还容易产生误诊、漏诊。随着人工智能(artificial intelligence,AI)技术的发展与应用,机器学习(machine learning,ML),尤其是深度学习(deep learning,DL)在医学图像分析领域发挥着越来越重要的作用。为了进一步了解DL在医学图像自动分割和分类识别中的研究,本文对DL及其在医学图像分析领域的研究进展进行综述。为DL在解决医学图像分析诊断方面提供有益参考。

Due to the explosive growth of medical image data, traditionally relying on doctors to analyze and diagnose medical images manually, doctors are prone to fatigue, not only low efficiency and heavy workload, but also easy to misdiagnose and miss diagnoses. With the development and application of artificial intelligence technology, machine learning, especially deep learning, is playing an increasingly important role in the field of medical image analysis. In order to further understand the research of deep learning in automatic segmentation and classification and recognition of medical images, this article reviews the research progress of deep learning and its applications in the field of medical image analysis. Provide a useful reference for deep learning in solving medical image analysis and diagnosis.

参考文献:

[1] 吴扬. 基于深度学习的医学图像研究综述[J]. 电脑知识与技术,2020,16(19): 174-176.

Wu Y. A review of medical image research based on deep learning[J]. Computer Knowledge and Technology, 2020, 16(19): 174-176.

[2] Havaei M, Davy A, Warde-Farley D, et al. Brain tumor segmentation with Deep Neural Networks [J]. Medical Image Analysis, 2017, 35:18-31.

[3] 毛雷. 基于深度卷积网络的MRI图像脑肿瘤自动分割研究 [D]. 重庆:重庆理工大学,2018.

Mao L. A study on automatic segmentation of brain tumor using deep convolution network in MRI images [D]. Chongqing: Chongqing University of Technology,2018.

[4] Men K, Zhang T, Chen X, et al. Fully automatic and robust segmentation of the clinical target volume for radiotherapy of breast cancer using big data and deep learning[J]. Physica Medica, 2018, 50: 13-19.

[5] 马伟, 刘鸿利, 孙明建,等. 新型乳腺磁共振增强图像肿瘤区域的自动分割模型 [J]. 中国生物医学工程学报, 2019, 38(1): 28-34.

Ma W, Liu HL, Sun MJ, et al. A novel automated tumor segmentation model for enhanced breast MRI [J]. Chinese?Journal ofBiomedical Engineering,2019, 38(1): 28-34.

[6] Ahn SH, Yeo AU, Kim KH, et al. Comparative clinical evaluation of atlas and deep-learning-based auto-segmentation of organ structures in liver cancer [J]. Radiation Oncology, 2019, 14(1): 213.

[7] 黄赛. 基于深度学习的MR图像肝脏肿瘤自动化分割方法的研究 [D]. 南京:南京大学,2018.

Huang S. Study on automatic segmentation of liver tumor based on of MR images [D]. Nanjing: Nanjing University, 2018.

[8] Zhao X, Xie P, Wang M, et al. Deep learning-based fully automated detection and segmentation of lymph nodes on multiparametric-mri for rectal cancer: A multicentre study [J]. EBioMedicine, 2020, 56:102780.

[9] 张璐. 基于深度学习的淋巴结自动分割算法研究 [D]. 杭州:浙江大学,2019.

Zhang L. Research on automatic segementation algorithm of lymph nodes based on deep learning [D].Hangzhou: Zhejiang University, 2019.

[10] 赵飞, 刘杰. 基于卷积神经网络和图像显著性的心脏CT图像分割 [J]. 北京生物医学工程, 2020, 39(1): 48-55.

Zhao F, Liu J. Cardiac CT image segmentation based on convolutional neural network and image saliency [J]. Beijing Biomedical Engineering,2020, 39(1): 48-55.

[11] 刘云鹏, 蔡文立, 洪国斌,等. 应用图像块和全卷积神经网络的肩关节MRI自动分割 [J]. 中国图象图形学报, 2018, 23(10): 1558-1570.

Liu YP, Cai WL, Hong GB, et al. Automatic segmentation of shoulder joint in MRI by using patch-wise and full-image fully convolutional networks [J]. Journal of Image and Graphics, 2018, 23(10): 1558-1570.

[12] 冉昭, 简俊明, 王蒙蒙,等. 基于全卷积神经网络的直肠癌肿瘤磁共振影像自动分割方法 [J]. 北京生物医学工程, 2019, 38(5): 465-471.

Ran Z, Jian JM, Wang MM, et al. Automatic segmentation method based on full convolution neural network for rectal cancer tumors in magnetic resonance image [J]. Beijing Biomedical Engineering,2019, 38(5): 465-471.

[13] Dai L, Fang R, Li H, et al. Clinical report guided retinal microaneurysm detection with multi-sieving deep learning [J]. IEEE Transactions on Medical Imaging, 2018, 37(5): 1149-1161.

[14] Gulshan V, Peng L, Coram M, et al. Development and validation of a deep learning algorithm for detection of diabetic retinopathy in retinal fundus photographs [J]. JAMA, 2016, 316(22): 2402-2410.

[15] Ohsugi H, Tabuchi H, Enno H, et al. Accuracy of deep learning, a machine-learning technology, using ultra-wide-field fundus ophthalmoscopy for detecting rhegmatogenous retinal detachment [J]. Scientific Reports, 2017, 7(1): 9425.

[16] Hamm CA, Wang CJ, Savic LJ, et al. Deep learning for liver tumor diagnosis part I: development of a convolutional neural network classifier for multi-phasic MRI?[J]. European Radiology, 2019, 29(7): 3338-3347.

[17] Yasaka K, Akai H, Abe O, et al. Deep learning with convolutional neural network for differentiation of liver masses at dynamic contrast-enhanced CT: a preliminary study [J]. Radiology, 2018, 286(3): 887-896.

[18] 茹仙古丽·艾尔西丁, 艾尔潘江·库德来提, 严传波,等. 卷积神经网络在肝癌病理切片图像分类中的应用 [J]. 北京生物医学工程, 2020, 39(1): 29-33.

Roxangul A, Arpanjan K, Yan CB, et al. Application of convolutional neural network in image classification of liver cancer pathological section [J]. Beijing Biomedical Engineering, 2020, 39(1): 29-33.

[19] Ardila D, Kiraly AP, Bharadwaj S, et al. End-to-end lung cancer screening with three-dimensional deep learning on low-dose chest computed tomography [J]. Nature Medicine, 2019, 25(6): 954-961.

[20] Ciompi F, Chung K, Van Riel SJ, et al. Towards automatic pulmonary nodule management in lung cancer screening with deep learning [J]. Scientific Reports, 2017, 7(1): 46479.

[21] Jiang H, Ma H, Qian W, et al. An Automatic detection system of lung nodule based on multigroup patch-based deep learning network [J]. IEEE Journal of Biomedical and Health Informatics, 2018, 22(4): 1227-1237.

[22] Coudray N, Ocampo PS, Sakellaropoulos T, et al. Classification and mutation prediction from non-small cell lung cancer histopathology images using deep learning [J]. Nature Medicine, 2018, 24(10): 1559-1567.

[23] González G, Ash SY, Vegas-Sánchez-Ferrero G, et al. Disease staging and prognosis in smokers using deep learning in chest computed tomography [J]. American Journal of Respiratory and Critical Care Medicine, 2018, 197(2): 193-203.

[24] Walsh SLF, Calandriello L, Silva M, et al. Deep learning for classifying fibrotic lung disease on high-resolution computed tomography: a case-cohort study [J]. The Lancet Respiratory Medicine, 2018, 6(11): 837-845.

[25] Nardelli P, Jimenez-Carretero D, Bermejo-Pelaez D, et al. Pulmonary artery-vein classification in CT images using deep learning [J]. IEEE Transactions on Medical Imaging, 2018, 37(11): 2428-2440.

[26] Zreik M, Lessmann N, van Hamersvelt RW, et al. Deep learning analysis of the myocardium in coronary CT angiography for identification of patients with functionally significant coronary artery stenosis [J]. Medical Image Analysis, 2018, 44: 72-85.

[27] Han SS, Kim MS, Lim W, et al. Classification of the clinical images for benign and malignant cutaneous tumors using a deep learning algorithm [J]. Journal of Investigative Dermatology, 2018, 138(7): 1529-1538.

[28] Esteva A, Kuprel B, Novoa RA, et al. Dermatologist-level classification of skin cancer with deep neural networks [J]. Nature, 2017, 542(7639): 115-118.

[29] Ding Y, Sohn JH, Kawczynski MG, et al. A deep learning model to predict a diagnosis of Alzheimer disease by using 18F-FDG PET of the brain [J]. Radiology,2019, 290(2): 456-464.

[30] Peng H, Dong D, Fang MJ, et al. Prognostic value of deep learning PET/CT-based radiomics: potential role for future individual induction chemotherapy in advanced nasopharyngeal carcinoma [J]. Clinical?Cancer Research, 2019, 25(14): 4271-4279.

[31] Jeyaraj PR, Nadar ERS. Computer-assisted medical image classification for early diagnosis of oral cancer employing deep learning algorithm [J]. Journal of?Cancer Research and Clinical Oncology, 2019, 145(4): 829-837.

[32] Lee JH, Ha EJ, Kim JH. Application of deep learning to the diagnosis of cervical lymph node metastasis from thyroid cancer with CT [J]. European Radiology, 2019, 29(10): 5452-5457.

[33] Gandomkar Z, Brennan PC, Mello-Thoms C. MuDeRN: multi-category classification of breast histopathological image using deep residual networks [J]. Artificial Intelligence in?Medicine, 2018, 88:14-24.

[34] Bien N, Rajpurkar P, Ball RL, et al. Deep-learning-assisted diagnosis for knee magnetic resonance imaging: Development and retrospective validation of MRNet [J]. PLoS Medicine, 2018, 15(11): e1002699.

?

服务与反馈:
文章下载】【加入收藏
提示:您还未登录,请登录!点此登录
 
友情链接  
地址:北京安定门外安贞医院内北京生物医学工程编辑部
电话:010-64456508  传真:010-64456661
电子邮箱:llbl910219@126.com