[1] Tham YC, Li X, Wong TY, et al. Global prevalence of glaucoma and projections of glaucoma burden through 2040: a systematic review and meta-analysis[J].Ophthalmology,2014,121:2081–2090.
[2] Mansoori T, Balakrishna N. Anterior segment morphology in primary angle closure glaucoma using ultrasound biomicroscopy[J].?Journal of Current Glaucoma Practice. 2017,11(3):86-91.
[3]?刘丰伟,李汉军,张逸鹤,等.人工智能在医学影像诊断中的应用[J].北京生物医学工程,2019,38(2):206-211.
Liu FW,Li HJ,Zhang YH,et al.?Application of artificial intelligence in medical imaging diagnosis[J].?Beijing Biomedical Engineering,2019,38(2):206-211.
[4] Ting DSW,Cheung CY, Lim G, et?al. Development and validation of a deep learning system for diabetic retinopathy and related eye diseases using retinal images from multiethnic populations with diabetes[J]. JAMA ,2017,318:2211–2223.
[5]?Gargeya R, Leng T. Automated identification of diabetic retinopathy using deep learning[J]. Ophthalmology,2017,124:962–969.
[6]?Chen X, Xu Y, Wong DWK, et al. Glaucoma detection based on deep convolutional neural network[C]//2015 37th annual international conference of the IEEE engineering in medicine and biology society (EMBC). Milan:IEEE, 2015: 715-718.
[7] Xu BY, Chiang M, Chaudhary S,et al. Deep learning classifiers for automated detection of gonioscopic angle closure based on anterior segment OCT images[J]. American Journal of Ophthalmology,2019,208:273-280.
[8] Fu H, Baskaran M, Xu Y, et al. A deep learning system for automated angle-closure detection in anterior segment optical coherence tomography images[J]. American Journal of?Ophthalmology,?2019,203:37-45.
[9]?Shorten C , Khoshgoftaar TM . A survey on image data augmentation for deep learning[J]. Journal of Big Data, 2019, 6(1):1-48.
[10]Huang G, Liu Z, van Der Maaten L, et al. Densely connected convolutional networks [C] //Proceedings of the IEEE conference on computer vision and pattern recognition. Hawaii :IEEE,2017: 4700-4708.
[11]?Szegedy C, Vanhoucke V, Ioffe S, et al. Rethinking the inception architecture for computer vision[C]//Proceedings of the IEEE conference on computer vision and pattern recognition. Las Vegas :IEEE,2016: 2818-2826.
[12]?Chollet F. Xception: Deep learning with depthwise separable convolutions[C]//Proceedings of the IEEE conference on computer vision and pattern recognition. Hawaii :IEEE,2017: 1251-1258.
[13]?Donahue J, Hendricks LA, Rohrbach MA, et al. Long-term recurrent convolutional networks for visual recognition and description[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39(4): 677-691.
[14]?Pan SJ, Yang Q. A survey on transfer learning[J]. IEEE Transactions on Knowledge and Data Engineering, 2010, 22(10): 1345-1359.
[15]?Selvaraju RR, Cogswell?M,Das A,et al. Grad-CAM: visual explanations from deep networks via gradient-based localization[J]. International Journal of Computer Vision,2020, 128:336–359.
|