设为首页 |  加入收藏
首页首页 期刊简介 消息通知 编委会 电子期刊 投稿须知 广告合作 联系我们
全膝关节置换胫骨平台截骨后倾角对关节接触力的影响

The influence of different posterior tibial slope on tibio-femoral contact force after total knee arthroplast

作者: 杜明明  张宽  曾纪洲  闫松华 
单位:首都医科大学 生物医学工程学院(北京 100069); 首都医科大学 临床生物力学应用基础研究北京市重点实验室(北京 100069); 首都医科大学附属北京潞河医院骨关节外科(北京 101149)
关键词: 全膝关节置换;  胫骨平台截骨后倾角;  有限元分析;  接触应力;  应力分布 
分类号:R318.01
出版年·卷·期(页码):2021·40·3(227-232)
摘要:

目的 通过膝关节有限元模型模拟胫骨平台不同截骨后倾角(posterior tibial slope,PTS),计算全膝关节置换(total knee arthroplasty , TKA)后聚乙烯衬垫、胫骨截骨面以及胫骨干处的应力分布,探索胫骨平台不同截骨后倾角对胫股关节接触力的影响。方法 根据1例膝骨关节炎患者的下肢CT及MRI图像,建立术前膝关节三维模型,而后进行模拟全膝关节置换,分别建立胫骨平台0°、3°、6°、9°截骨后倾的膝关节有限元模型。在Abaqus中进行仿真计算,选择静止站立进行加载,施加轴向载荷300 N。结果  随着胫骨平台截骨后倾角的增加,聚乙烯衬垫内外侧接触合力百分比没有明显变化,但各部位的应力峰值随之增加。聚乙烯衬垫内侧接触应力峰值从0°时的4.51 MPa增加到9°时的6.13 MPa;外侧接触应力峰值从3.57 MPa增加到6.02 MPa。胫骨截骨面处的接触应力峰值从0°时的0.84 MPa增加到9°时的1.09 MPa。胫骨干处的应力峰值从0°时的1.97MPa增加至9°时的3.23 MPa。结论  胫骨平台截骨后倾角的增加会加大聚乙烯衬垫、胫骨截骨面、胫骨干处的应力峰值。应力峰值过大会增加假体磨损及松动的风险,使得术后关节疼痛或假体翻修的可能性加大。胫骨平台截骨后倾角直接影响到术后的膝关节功能,有待于开展大量的相关研究,综合探索截骨规律。

Objective To explore the influence of different posterior tibial slopes (PTS) on tibio-femoral contact forces after total knee arthroplasty (TKA) by calculating the stress distribution on tibial polyethylene insert, the bone-implant surface of tibia and tibial shaft.Methods Based on CT and MRI images of a patient with knee osteoarthritis, a three dimensional knee joint model before the surgery was established, and then a TKA was performed. Finite element models of knee joints with PTS of 0°, 3°, 6°, and 9° during static standing were established, and were analyzed in Abaqus with an axial load of 300N.Results  With the increase of PTS, the percentages of the contact force on the medial and lateral sides of the tibial polyethylene insert did not change significantly, but the maximum Von-Mises stress on both sides increased. The maximum Von-Mises stress on medial tibial polyethylene insert increased from 4.51MPa at 0° to 6.13MPa at 9°, and increased from 3.57MPa at 0° to 6.02MPa at 9° on lateral. The maximum Von-Mises stress on the bone-implant surface of tibia increased from 0.84 MPa at 0° to 1.09 MPa at 9°.The maximum Von-Mises stress on tibial shaft increased from 1.97 MPa at 0° to 3.23 MPa at 9°.Conclusions The maximum Von-Mises stress on tibial polyethylene insert, the bone-implant surface of tibia and tibial shaft increases as the PTS increases after TKA. Stress spikes increase the risk of prosthesis wear and loosening, making joint pain or prosthesis revision more likely after surgery. The PTS directly affects the function of the knee after surgery, and the related studies need to be widely carried out in the future to comprehensively explore the influence of PTS.

参考文献:

[1] 裴福兴. 中国髋、膝关节置换的现状及展望[J]. 中国骨与关节杂志,2012,1(1):4-8.

Pei FX. The current status and future perspective of hip and knee arthroplasty in China[J]. Chinese Journal of Bone And Joint, 2012,1(1):4-8.

[2]Van-Onsem S, Van-Der-Straeten C, Arnout N, et al. A new prediction model for patient satisfaction after total knee arthroplasty[J]. Journal ofArthroplasty, 2016, 31(12): 2660-2667.

[3]Hofmann AA, Bachus KN, Wyatt RW. Effect of the tibial cut on subsidence following total knee arthroplasty[J]. Clinical Orthopaedics and Related Research,1991(269):63-69.

[4]Dai Y, Cross MB, Angibaud LD, et al. Posterior tibial slope impacts intraoperatively measured mid-flexion anteroposterior kinematics during cruciate-retaining total knee arthroplasty[J].Knee Surgery,Sports Traumatology, Arthroscopy,2018 ,26(11):3325-3332.

[5] Pourzal R, Cip J, Rad E, et al. Joint line elevation and tibial slope are associated with increased polyethylene wear in cruciate retaining total knee replacement[J]. Journal of Orthopaedic Research, 2020, 38(7): 1596-1606.

[6] 黄永宝,罗盛源,梁广.股骨侧假体与胫骨平台角度对膝关节活动度的影响[J].中华关节外科杂志,2019,13(4):407-411.

Huang YB, Luo SY, Liang G. Effects of femoral flexion angle and tibial plateau tilt angle on range of motion after total knee arthroplasty[J]. Chinese Journal of Joint Surgery(Electronic Edition), 2019,13(4):407-411.

[7] 齐勇,孙鸿涛,樊粤光. 胫骨后倾角对前交叉韧带及膝关节稳定性影响的三维有限元分析[J]. 中国运动医学杂志, 2016, 35(8):708-713.

Qin Y, Sun HT, Fan YG. The influence of posterior tibial slope on the anterior cruciate ligament and knee joint stability[J]. Chinese Journal of Sports Medicine,2016, 35(8):708-713.

[8] 肖瑜,张福江,郭军,等.胫骨后倾截骨对后十字韧带保留型全膝关节置换术疗效的影响[J].中华骨科杂志, 2010,30(8):743-747.

Xiao Y, Zhang FJ, Guo J,et al. Investigation of preliminary clinical outcome following PCL-retaining total knee arthroplasty with posterior tibial slope [J]. Chinese Journal of Orthopaedics, 2010,30(8):743-747.

[9]Vaidya N, Aski B, Patil R. Total knee arthroplasty and posterior tibial slope[J]. International Surgery Journal,2015,2(1):43-46.

[10]Chambers AW, Wood AR, Kosmopoulos V, et al. Effect of posterior tibial slope on flexion and anterior-posterior tibial translation in posterior cruciate-retaining total knee arthroplasty[J]. Journal of Arthroplasty, 2016, 31(1):103-106.

[11] Kang KT, Kwon SK, Son J, et al. The increase in posterior tibial slope provides a positive biomechanical effect in posterior-stabilized total knee arthroplasty[J]. Knee Surgery,Sports Traumatology, Arthroscopy,2018,26(10):3188-3195.

[12]Sun J, Yan S, Jiang Y, et al. Finite element analysis of the valgus knee joint of an obese child[J]. BioMedical Engineering OnLine, 2016, 15(Suppl2):309-321. 

[13]Donahue TLH, Hull ML, RashidMM, et al. A finite element model of the human knee joint for the study of tibio-femoral contact[J]. Journal of Biomechanical Engineering, 2002, 124(3): 273-280.

[14]Majumder S, Roychowdhury A, Pal S. Simulation of hip fracture in sideways fall using a 3D finite element model of pelvis–femur–soft tissue complex with simplified representation of whole body[J]. Medical Engineering & Physics, 2007, 29(10), 1167-1178.

[15]Siegler S, Block J, Schneck CD. The mechanical characteristics of the collateral ligaments of the human ankle joint.[J]. Foot & Ankle, 1988, 8(5):234-242.

[16]Villa T, Migliavacca F, Gastaldi D, et al. Contact stresses and fatigue life in a knee prosthesis: comparison between in vitro measurements and computational simulations[J]. Journal of Biomechanics, 2004, 37(1):45-53.

[17]Liau JJ, Cheng CK, Huang CH, et al. The effect of malalignment on stresses in polyethylene component of total knee prostheses-a finite element analysis[J]. Clinical Biomechanics, 2002, 17: 140-146.

[18]Halloran JP , Petrella AJ , Rullkoetter PJ. Explicit finite element modeling of total knee replacement mechanics[J]. Journal of Biomechanics, 2005, 38(2):323-331.

[19]赵峰, 王川, 樊瑜波. 全膝关节置换术中聚乙烯衬垫的磨损测评研究进展[J]. 中国医疗器械杂志, 2015,39 (1):33-36.

Zhao F, Wang C, Fan YB. Research Progress of Polyethylene Inserts Wear Measurement and Evaluation in Total Knee Arthroplasty[J]. Chinese Journal of Medical Instrumentation,2015, 39(1):33-36.

[20] 王海羽, 王挺. 有限元法分析全膝关节置换对胫骨近端骨重建的影响[J]. 中国组织工程研究, 2016, 20(35):5180-5186.

Wang HY, Wang T. Effects of total knee arthroplasty on proximal tibial reconstruction using finite element analysis[J]. Chinese Journal of Tissue Engineering Research, 2016, 20(35):5180-5186.

[21]Kurtz S, Ong K, Lau E, et al. Projections of primary and revision hip and knee arthroplasty in the United States from 2005-2030[J]. The Journal of Bone and Joint Surgery (American), 2007, 89:780–785.

[22]Haller JM, Kubiak EN, Spiguel A, et al. Intramedullary nailing of tibial shaft fractures distal to total knee arthroplasty[J]. Journal of  Orthopaedic Trauma, 2014, 28(12):e296.

服务与反馈:
文章下载】【加入收藏
提示:您还未登录,请登录!点此登录
 
友情链接  
地址:北京安定门外安贞医院内北京生物医学工程编辑部
电话:010-64456508  传真:010-64456661
电子邮箱:llbl910219@126.com