设为首页 |  加入收藏
首页首页 期刊简介 消息通知 编委会 电子期刊 投稿须知 广告合作 联系我们
基于多传感器信息的新型穿戴式上肢外骨骼康复机器人

A new wearable upper limb exoskeleton rehabilitation robot based on multi-sensor information

作者: 刘壮  朱纯煜  朱越  刘苏  喻洪流  李素姣 
单位:上海理工大学康复工程与技术研究所(上海 200093) 上海康复器械工程技术研究中心(上海 200093) 民政部神经功能信息与康复工程重点实验室(上海 200093)
关键词: 多信息;  上肢外骨骼;  康复机器人;  肌电信号;  多模式 
分类号:R318.01
出版年·卷·期(页码):2021·40·3(273-278)
摘要:

目的 设计基于多传感器信息的新型穿戴式上肢外骨骼康复机器人,以解决上肢外骨骼康复机器人便携性不佳、患者参与度较低、训练模式自适应不足等问题,并探究受试者穿戴外骨骼时肌肉激活程度、肌电信号预测关节角度的准确性以及实现上肢康复训练的可行性。方法 该设备机械结构包括肘关节和腕关节,采用模块化设计并结合3D打印技术;控制系统包括肌电采集、应力采集、姿态采集等单元,并设计主动、被动和助动三种训练模式。受试者穿戴外骨骼机器人后进行屈-伸肘实验,对比有、无辅助力时手臂肌肉激活程度;分析肘关节角度,并对比肌电信号预测的关节运动角度;验证机器人运行性能与应力检测效果。 结果 受试者穿戴外骨骼康复机器人安全可靠地完成了屈-伸肘动作,受试者肱二头肌、肱三头肌肌肉激活程度在有、无辅助力时分别减弱约32%、11%,肌电信号预测关节角度准确度约95%,应力测量值误差均低于5%。结论 上肢外骨骼机器人可以给人体提供辅助力、预测关节角度,机器人通过肌电、应力以及位置信息辅助患者实现上肢康复训练具有可行性。

Objective To design new wearable arm exoskeleton rehabilitation robots based on multi-sensor information, in order to solve problems of poor portability of upper limb exoskeleton rehabilitation robots, the low degree of participation for patients and insufficient training mode adaptability, and to explore the muscle activation degree of participants wearing exoskeletons, accuracy of electromyographic signal predicting the joint angle and the feasibility of the upper limb rehabilitation training. Methods The mechanical structure of the device, which included elbow and wrist joints, was modular and combines 3D printing technology; the control system included electromyography (EMG) acquisition, stress acquisition, attitude acquisition and other units, and three training modes of active, passive and assisted were designed. After the subjects wore the exoskeleton robot, the elbow flexion and extension experiment was conducted to compare the activation degree of arm muscles with and without auxiliary force; the elbow angle was analyzed and the joint motion angle predicted by EMG signal was compared. The running performance and stress detection effect of robots were verified. Results The subjects with the exoskeleton rehabilitation robot completed the flexion and elbow extension movement safely and reliably. The muscle activation degrees of the biceps and triceps of the subjects were reduced by 32% and 11% with and without assistance, respectively. The accuracy of EMG signal in predicting the joint angle was about 95%, and the error of stress measurement was less than 5%. Conclusion The upper extremity exoskeleton robot can provide human bodies with auxiliary force and predict the joint angle. It is feasible for the robot to assist patients to achieve upper extremity rehabilitation training with EMG, stress and position information.

参考文献:

[1] Mazzoleni S, Battini E, Crecchi R, et al. Upper limb robot-assisted therapy in subacute and chronic stroke patients using an?innovative end-effector haptic device:?a pilot study[J].Neuro‐Rehabilitation,2018,42(1):43-52.

[2] 张晓玉,王凯旋.机器人辅助技术、康复机器人与智能辅具[J].中国康复,2013,04:246-248.

???Zhang XY, Wang KX. Robot-assisted technology, Rehabilitation robot and Intelligent Auxiliaries [J]. Rehabilitation in China, 2013,04:246-248.

[3] Bai YL, Hu?YS, Wu?Y, et al.?A?prospective, randomized, single-blinded trial on the effect of early rehabilitation on daily activities and motor function of patients with hemorrhagic stroke [J]. Journal of Clinical Neuroscience ,2012,19(10):1376-1379.

[4] 周娃妮,邴建华.肌电反馈治疗技术在脑卒中患者中的应用及对认知功能的影响研究[J].按摩与康复医学,2019,10(20):21-22.

[5] Mehrholz J ,Platz T ,Kugler J ,et al .Electromechanical and robot-assisted arm training for improving arm function and activities of daily living after stroke[J].Stroke ,2008,40(4):CD006876

[6] Fellag?R?,Benyahia T ,Drias?M?et al?.Sliding mode control?of a 5 dofs upper limb exoskeleton robot [C]//The 5th International Conference on Electrical Engineering-Boumerdes ,Boumerdes :IEEE,2017: 5-10.

[7] 许祥.基于外骨骼的上肢康复机器人设计与研究[D].南京:南京理工大学,2014.

???Xu X. Design and Research of upper limb Rehabilitation robot based on exoskeleton [D]. Nanjing:Nanjing University of Science and Technology, 2014.

[8] 张神权.表面肌电模式识别的新控制策略研究[D].合肥:中国科学技术大学,2017.

???Zhang SQ. A new control strategy for surface EMG pattern Recognition [D]. Hefei: University of Science and Technology of China, 2017.

[9] Lloyd DG, Besier TF. An EMG-driven musculoskeletal model to estimate muscle forces and knee joint moments in vivo[J]. Journal of Biomechanics, 2003, 36(6): 765-776.

[10] 王露露,胡鑫,胡杰,等.一种上肢外骨骼康复机器人的控制系统研究[J].生物医学工程学杂志,2016,33(6):1168-1175.

Wang LL?,Hu X?,Hu J,et al. Research on control system of an exoskeleton upper-limb rehabilitation robot[J].?Journal of Biomedical Engineering,2016,33(6):1168-1175.

[11] Daunoraviciene K?,Adomaviciene A?,Grigonyte A?,et al?.Effects of robot-assisted training on upper limb functional recovery during the rehabilitation of poststroke patients [J] .TechnolHealth Care ,2018, 26(S2): 533-542.

[12] Lenzi T ,De Rossi S M M ,Vitiello N ,et al.Intention-Based EMG Control for Powered Exoskeletons[J].IEEE Transactions on Biomedical Engineering,2012, 59(8):2180-2190.

[13] 张蔚然.上肢外骨骼康复机器人控制系统研究[D].?济南:山东建筑大学, 2019.

Zhang WR . Research on control system of upper-limb exoskeleton rehabilitation robot [D] .Jinan:Shandong Jianzhu University,2019.

?[14] 张琳琳.人体上肢生物力学建模和典型运动的生物力学研究[D].上海:上海交通大学,2009.

????Zhang LL. Biomechanical modeling of human upper limbs and biomechanical studies of typical movements [D]. Shanghai: Shanghai Jiaotong University,2009.

[15] 潘礼正,宋爱国,徐国政,等.上肢康复机器人实时安全控制[J].机器人,2012,34(2):197-203.

Pan LZ ,Song AG ,Xu GZ ,et al .Real-time safety control of upper-limb rehabilitation robot[J] .Robot ,2012,34(02):197-203.

[16] 王亚峰,陈昊,张军,等.基于CAN的分布式机器人控制系统设计[J].电子设计工程, 2017,25(14): 148-151

Wang?YF ,Chen H ,Zhang J ,et al .The design of distributed robot control system based on CAN bus[J] . Electronic Design Engineering ,2017,25(14): 148-151.

[17] 陈思媛,曾富荣,陈灵聪,等.便携式肘关节康复训练机器人[J].科学技术创新,2019(1):65-68.

[18] Kumar P ,Potluri C ,Sebastian A ,et al .Adaptive multi sensor based nonlinear identification of skeletal muscle force[J].WSEAS Transactions on Systems , 2010, 9(10/12):1050-1062.

[19] 胡成彬.上肢康复机器人机电系统研制[D].北京:北京化工大学, 2019.

Hu?CB?.Development?of?electromechanical?system?for?upper?limb?rehabilitation?robot[D]?.Beijing:Beijing?University?of?Chemical?Technology?,2019.

[20] Gilliaux M ,Lejeune T M ,Detrembleur C ,et al .Using the robotic device reaplan as a valid ,reliable , and sensitive tool to quantify upper limb impairments in stroke patients[J] .Journal of Rehabilitation Medicine ,2014, 46(2): 117-125

[21] Anam K?,Rosyadi?A A ,Sujanarko?B?,et al?.Myoelectric control systems for hand rehabilitation device: A review [C]//2017 4th International Conference on Electrical Engineering ,Computer Science and Informatics ( EECSI).Yogyakarta: IEEE,2017: 1-6.

?

服务与反馈:
文章下载】【加入收藏
提示:您还未登录,请登录!点此登录
 
友情链接  
地址:北京安定门外安贞医院内北京生物医学工程编辑部
电话:010-64456508  传真:010-64456661
电子邮箱:llbl910219@126.com