设为首页 |  加入收藏
首页首页 期刊简介 消息通知 编委会 电子期刊 投稿须知 广告合作 联系我们
基于小波稀疏的磁性纳米粒子成像算法研究

Research on magnetic particle imaging algorithm based on wavelet sparse

作者: 张玉录  柯丽  杜强  赵宇楠  祖婉妮 
单位:沈阳工业大学电气工程学院(沈阳 110870) <p>通信作者:柯丽。E-mail:keli@sut.edu.cn</p>
关键词: 磁性纳米粒子成像;代数重建算法;小波变换;阈值算子;峰值信噪比 
分类号:R318.04
出版年·卷·期(页码):2021·40·4(337-345)
摘要:

目的 为了实现磁性纳米粒子成像(magnetic particle imaging, MPI)中粒子浓度空间分布的快速精准成像,针对系统矩阵成像方法所构建矩阵方程的求解问题,本文提出一种基于小波稀疏的MPI算法。方法 首先通过仿真从基于零场线的开放式MPI电磁系统中获得MPI信号构建矩阵方程;然后在经典代数重建算法(algebraic reconstruction technique, ART)每次迭代后均采用小波变换提取图像中粒子分布边缘的非平稳特征,结合阈值算子稀疏运算去除图像中的干扰信号,实现粒子浓度空间分布成像;最后用峰值信噪比参数(peak signal-to-noise ratio, PSNR)对不同噪声下的成像结果进行分析。结果 当系统信噪比为30 dB、20 dB、10 dB时,基于小波稀疏的MPI算法在快速收敛的前提下,所成图像的PSNR参数相较经典代数重建算法分别提升了67.83%、18.66%、8.05%。结论 在低噪声水平下,基于小波稀疏的MPI算法可在短时间内实现粒子分布状况的高质量成像。

Objective In order to achieve rapid and accurate imaging of the spatial distribution of particle concentration in magnetic particle imaging, aiming at the problem of solving the matrix equation constructed by the system matrix imaging method, this paper proposes a magnetic particle imaging algorithm based on wavelet sparseness. Methods First, obtain the MPI signal from the open MPI electromagnetic system based on the free field line to construct the matrix equation through simulation;Then after each iteration of the classical algebraic reconstruction technique, wavelet transform is used to extract the non-stationary features of the edge of the particle distribution in the image,combine the threshold operator sparse operation to remove the interference signal in the image and realize the imaging of the spatial distribution of particle concentration;Finally, the peak signal-to-noise ratio parameter is used to analyze the imaging results under different noises. Results When the system signal-to-noise ratio is 30dB, 20dB, 10dB, the MPI algorithm based on wavelet sparseness under the premise of rapid convergence, the PSNR parameters of the resulting image are improved by 67.83%, 18.66%, and 8.05% respectively compared with the classic algebraic reconstruction technique. Conclusions Under low noise level, the MPI algorithm based on wavelet sparseness can achieve high-quality imaging of particle distribution in a short time.

参考文献:

[1] Panagiotopoulos N, Duschka RL, Ahlborg M, et al. Magnetic particle imaging: current developments and future directions[J]. International Journal of Nanomedicine, 2015, 10(1): 3097-3114.

[2] Mimura A, Inaoka Y, Asakawa S, et al. A novel cellular imaging method using hemagglutinating virus of Japan-envelope (HVJ-E) vector and magnetic particle imaging[J]. Journal of Nanoence and Nanotechnology, 2020, 20(4): 2007-2017.

[3] Vogel P, Rückert MA, Kampf T, et al. Superspeed bolus visualization for vascular magnetic particle imaging[J]. IEEE Transactions on Medical Imaging, 2020, 39(6): 2133-2139.

[4] Yu EY, Bishop M, Zheng B, et al. Magnetic particle imaging: a novel in vivo imaging platform for cancer detection[J]. Nano Letters, 2017, 17(3): 1648-1654.

[5] Wang QY, Ma XB, Liao HW, et al. Artificially engineered cubic iron oxide nanoparticle as a high-performance magnetic particle imaging tracer for stem cell tracking[J]. ACS Nano, 2020, 14(2): 2053-2062.

[6] Wells J, Twamley S, Sekar A, et al. Lissajous scanning magnetic particle imaging as a multifunctional platform for magnetic hyperthermia therapy[J]. Nanoscale, 2020, 12(35): 18342-18355.

[7] ?Le TA, Zhang XM,? Hoshiar AK, et al. Real-time two-dimensional magnetic particle imaging for electromagnetic navigation in targeted drug delivery[J]. Sensors, 2017, 17(9): 2050.

[8] Top CB, Güng?r A, Ilbey S, et al. Trajectory analysis for field free line magnetic particle imaging[J]. Medical Physics, 2019, 46(4): 1592-1607.

[9] Storath M, Brandt C, Hofmann M, et al. Edge preserving and noise reducing reconstruction for magnetic particle imaging[J]. IEEE Transactions on Medical Imaging, 2017, 36(1): 74-85.

[10] Kluth T, Jin B. Enhanced reconstruction in magnetic particle imaging by whitening and randomized SVD approximation[J]. Physics in Medicine & Biology, 2019, 64(12): 125026.

[11] Straub M, Schulz V. Joint reconstruction of tracer distribution and background in magnetic particle imaging[J]. IEEE Transactions on Medical Imaging, 2018, 37(5): 1192-1203.

[12] Ilbey S, Top CB, Güng?r A, et al. Fast system calibration with coded calibration scenes for magnetic particle imaging[J]. IEEE Transactions on Medical Imaging, 2019, 38(9): 2070-2080.

[13] Muta M, Tsujita Y, Matsuo M, et al.? ?Three-dimensional magnetic particle? imaging utilizing multiple pickup coils and? field-free line[C]// 2017 16th International? Superconductive Electronics Conference (ISEC). Naples, Italy: IEEE Press, 2017: 1-3.

[14] Rahmer J, Weizenecker J, Gleich B, et al. Signal encoding in magnetic particle imaging: properties of the system function[J]. BMC Medical Imaging, 2009, 9: 4.

[15] Weizenecker J, Gleich B, Rahmer J, et al. Three-dimensional real-time in vivo magnetic particle imaging [J]. Physics in Medicine and Biology, 2009, 54(5): L1-L10.

[16] 刘洋洋, 杜强, 柯丽, 等. 磁性粒子成像线型零磁场设计及性能分析[J]. 电工技术学报, 2020, 35(10): 2088-2097.

Liu YY, Du Q, Ke L, et al. Design and analysis of magnetic field-free line in magnetic particle imaging[J]. Transactions of China Electrotechnical Society, 2020, 35(10): 2088-2097.

服务与反馈:
文章下载】【加入收藏
提示:您还未登录,请登录!点此登录
 
友情链接  
地址:北京安定门外安贞医院内北京生物医学工程编辑部
电话:010-64456508  传真:010-64456661
电子邮箱:llbl910219@126.com