[1]孙晓敏, 徐萍, 马志红,等. 上海松江地区胆囊良性疾病的流行病学调查30901例[J]. 世界华人消化杂志, 2011, 19(27):2881-2885.
??? Sun XM, Xu P, Ma ZH, et al. An epidemiological survey of benign gallbladder disease in Songjiang District of Shanghai, China[J]. World Chinese Journal of Digestology, 2011, 019(027):2881-2885.
[2] 朱忠伟,李福军,胡柯铭,等.宁波镇海地区胆囊疾病的流行病学调查[J].现代实用医学,2012,24(11):1241-1242.
[3] 赵登秋, 张建淮, 王卫东. 江苏淮安地区胆囊疾病的流行病学调查[J]. 消化外科, 2004, 3(1):39-40.
??? Zhao DQ, Zhang JH, Wang WD, et al. An epidemic survey of gallbladder disease in Huaian district of Jiangshu Province[J]. Journal of Digestive Surgery, 2004, 3(1):39-40.
[4] ?Li ML, Zhang Z, Li XG, et al. Whole-exome and targeted gene sequencing of gallbladder carcinoma identifies recurrent mutations in the ErbB pathway[J]. Nature Genetics, 2014, 46(8):872-876.
[5] Naser MA, Deen MJ. Brain tumor segmentation and grading of lower-grade glioma using deep learning in MRI images[J]. Computers in Biology and Medicine, 2020, 121:103758.
[6] Hu HF, Pan N, Wang JY, et al. Automatic segmentation of left ventricle from cardiac MRI via deep learning and region constrained dynamic programming[J]. Neurocomputing, 2019, 347: 139-148.
[7] Almotairi S, Kareem G, Aouf M, et al. Liver tumor segmentation in CT scans using modified SegNet[J]. Sensors, 2020, 20(5):1516.
[8] 谭丹滟. 腹部CT影像中胆囊分割系统的设计与实现[D].武汉:华中科技大学, 2017.
??? Tan DY. Design and implementation of gallbladder segmentation system in abdominal CT images[D]. Wuhan: Huazhong University of Science and Technology, 2017.
[9] 段雪琦. 腹部CT影像中的胆管分割方法研究[D].武汉:华中科技大学, 2017.
??? Duan XQ. A research on bile duct segmentation in abdominal CT images[D]. Wuhan: Huazhong University of Science and Technology, 2017.
[10] Huang YF, Xu ZZ, Yan CR. Automatic gallbladder location and segmentation based on anatomical knowledge[J]. Applied Mechanics & Materials, 2014, 556-562:4697-4700.
[11] Lian J, Ma Y, Ma Y, et al. Automatic gallbladder and gallstone regions segmentation in ultrasound image[J]. International Journal of Computer Assisted Radiology and Surgery, 2017, 12(4):553-568.
[12] Li C, Tan Y, Chen W, et al. ANU-Net: attention-based nested U-Net to exploit full resolution features for medical image segmentation[J]. Computers & Graphics, 2020, 90: 11-20.
[13] Alom MZ, Yakopcic C, Hasan M, et al. Recurrent residual U-Net for medical image segmentation[J]. Journal of Medical Imaging, 2019, 6(1): 014006.
[14] Ronneberger O, Fischer P, Brox T. U-Net: convolutional networks for biomedical image segmentation[M]// International Conference on Medical Image Computing and Computer-Assisted Intervention-MICCAI 2015. Switzerland: ?Springer, Cham, 2015: 234-241.
[15] He K, Zhang X, Ren S, et al. Deep residual learning for image recognition[C]//2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Las Vegas, NV, USA: IEEE Press, 2016: 770-778.
[16] 刘杨,朱斌, 何健,等. 意外胆囊癌的影像学特征及误漏诊分析[J]. 中国医药导报,2020,17(1):161-164.
Liu Y, Zhu B, He J, et al. Analysis of imaging features of unsuspected gallbladder cancer and causes of misdiagnosis or missed diagnosis[J]. China Medical Herald,2020,17(1):161-164.
?
|