[1] ?杨昌俊,杨新.基于图割与快速水平集的腹部 CT 图像分割[J].CT 理论与应用研究, 2011, 20(3):291-300.
Yang CJ, Yang X. Abdominal CT image segmen-tation based on graph cuts and fast level set[J].CT Theory and Applications,2011,20(3):291-300.
[2] Nakayama Y, Li Q, Katsuragawa S, et al. Automated hepatic volumetry for living related liver transplantation at multisection CT[J]. Radiology,2006, 240(3):743–748.
[3] Kallini JR , Gabr A , Salem R , et al. Transarterial radioembolization with yttrium-90 for the? treatment of hepatocellular carcinoma[J]. Advances in Therapy, 2016, 33(5):699-714.
[4] 李成刚.三维重建与虚拟现实技术在肝脏外科的应用[J].世界华人消化杂志,2020,28(13):515-518.
??? Li CG. Application of three-dimensional reconstruction and virtual reality technology in liver surgery[J].World Chinese Journal of Digestology,2020,28(13):515-518.
[5] Berzigotti A, Abraldes J G, Tandon P, et al. Ultrasonographic evaluation of liver surface and transient elastography in clinically doubtful cirrhosis[J]. Journal of Hepatology, 2010, 52(6): 846-853.
[6] 赵于前,闫桂霞,徐效文,等.基于先验信息水平集方法的肝脏CT序列图像自动分割[J].中南大学学报(自然科学版), 2015, 46(4): 1310-1317.
Zhao YQ, Yan GX, Xu XW, et al. Automatic segmentation of livers from CT series based on level set method with prior knowledge[J]. Journal of Central South University(Science and Technology), 2015, 46(4): 1310-1317.
[7] ?吴健, 崔志明, 叶峰, 等. 基于轮廓形状的CT断层图像插值[J]. 计算机应用与软件, 2008, 25(11): 63-65.
?Wu J, Cui ZM, Ye F, et al.Interpolation based on contour shape for CT faulted images[J].Computer Applications and Software,2008, 25(11):63-65.
[8] ?Lu XQ, Wu JS, Ren XY, et al. The study and application of the improved region growing algorithm for liver segmentation[J]. Optik, 2014, 125(9): 2142-2147.
[9] Shelhamer E, Long J, Darrell T. Fully convolutional networks for semantic segmentation[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39(4): 640-651.
[10] Badrinarayanan V, Kendall A, Cipolla R. Segnet: a deep convolutional encoder-decoder architecture for image segmentation[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39(12): 2481-2495.
[11]Badrinarayanan V, Kendall A, Cipolla R. Segnet: a deep convolutional encoder-decoder architecture for image segmentation[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39(12): 2481-2495.
[12] Li XM, Chen H, Qi XJ, et al. H-DenseUNet: hybrid densely connected unet for liver and tumor segmentation from CT volumes[J]. IEEE Transactions on Medical Imaging, 2018, 37(12): 2663-2674.
[13] Goodfellow IJ, Pouget-Abadie J, Mirza M , et al. Generative adversarial networks[J]. Advances in Neural Information Processing Systems, 2014, 3: 2672-2680.
[14] Kim HJ, Lee D. Image denoising with conditional generative adversarial networks (CGAN) in low dose chest images[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2020, 954: 161914.
[15] Zhao D, Zhu D, Lu J, et al. Synthetic medical images using F&BGAN for improved lung nodules classification by multi-scale VGG16[J]. Symmetry, 2018, 10(10): 519.
[16] Zhou JY, Wong DW, Ding F, et al. Liver tumour segmentation using contrast-enhanced multi-detector CT data: performance benchmarking of three semiautomated methods[J]. European Radiology, 2010, 20(7): 1738-1748.
[17] Li Q, Song H, Chen L, et al. An overview of abdominal multi-organ segmentation[J]. Current Bioinformatics, 2020, 15(8): 866-877.
[18] Schindl MJ, Redhead DN, Fearon KC, et al. The value of residual liver volume as a predictor of hepatic dysfunction and infection after liver resection[J]. Gut, 2005, 54(2): 289-296.
[19] 刘博. 基于深度卷积神经网络的肝图像分割方法研究[D].哈尔滨: 哈尔滨工业大学,2019.
??? Liu B. Research on liver image segmentation based on deep convolutional neural network[D]. Harbin: Harbin Institute of Technology, 2019.
[20]李庆勃. 基于深度学习的肝脏肿瘤CT影像分割方法研究[D].西安:长安大学,2019.
Li QB. Research on CT image segmentation of liver tumor based on deep learning[D].Xi’an: Chang’an University, 2019.
[21] 黄泳嘉,史再峰,王仲琦,等.基于混合损失函数的改进型U-Net肝部医学影像分割方法[J].激光与光电子学进展,2020,57(22): 221003.
??? Huang YJ, Shi ZF, Wang ZQ, et al.Improved U-Net based on mixed loss functionfor liver medical image segmentation[J].Laser and Optoelectronics Progress,2020,57(22): 221003.
[22] 邓青松,吴传新,龚建平.3D打印技术在临床教学中的应用和效果[J].医学教育管理,2019,5(6):531-535.
Deng QS, Wu CX, Gong JP. Application and effect of 3D printing technology in clinical teaching[J].Medical Education Management,2019,5(6):531-535.
?
|