设为首页 |  加入收藏
首页首页 期刊简介 消息通知 编委会 电子期刊 投稿须知 广告合作 联系我们
房水流动粒子图像测速测试中跟随性示踪粒子选择的实验研究

Selection of tracing particles with optimal following performance for particle image velocimetry test of aqueous humor flow

作者: 王文佳  龙晓雪  刘志成  张弓  宋红芳  
单位:首都医科大学生物医学工程学院(北京100069) <p>临床生物力学应用基础研光北京市重点实验空(北京10009)3首都医科大学附属北京天坛医院(北京100070)</p> <p>通信作者:宋红芳。E-mailsonghf@comuedu.cn</p> <p>&nbsp;</p>
关键词: 粒子图像测速;  流场;  荧光粒子;实验研究  
分类号:R318.04 <p>&nbsp;</p>
出版年·卷·期(页码):2021·40·5(471-477)
摘要:

目的 在房水流动粒子图像测速(particle image velocimetry,PIV)测试中,选择最佳跟随性示踪粒子是展示真实流场的必要前提。本文探讨眼球房水慢流PIV测试中不同粒子的跟随性并选择最佳显影效果的示踪粒子。方法 依据几何相似性原理,设计并加工5倍于真实人眼大小的眼球模型;分别选择10 空心玻璃珠,以及1、3 、7 、和20~50 粒径荧光粒子作为示踪粒子,运用PIV系统在眼球模型上进行流场测试,比较粒子的空间分布规律探讨粒子跟随性问题,确定可用于房水流场测试的最佳示踪粒子。结果 荧光粒子的粒径越大,沉淀的速度越快,则沉淀量越多。1 的荧光粒子跟随性好、但显影效果不佳。3 荧光粒子随着测量时间的增加,沉淀最不明显,跟随性和显影效果最佳。结论 示踪粒子直径对其在眼球房水流动中的跟随性和显影效果具有显著影响。基于当前的PIV设备,3 荧光粒子是房水流场测试最佳的示踪粒子。本研究为采用PIV技术进行体外房水流场测量提供一定的实验基础。

 

Objective In the particle image velocimetry(PIV) test on aqueous humor flow, the selection of optimal tracing particles with optimal following performance is a necessary prerequisite to show the real flow field. This paper investigates the following performance of different tracing particles and selects tracing particle with optimal exposure effect in the PIV test of low-speed aqueous humor flow field in eyes. Methods A five-fold human eyeball model was designed and fabricated. The 10 hollow glass beads, 1, 3, 7 and 20~50 fluorescent particles, were selected as the tracing particles for the measurement of PIV system on the eyeball model. The spatial distributions of the different particles were compared to explore the problem of particle following performance so as to determine the optimal tracing particle for the aqueous humor flow test. Results The larger the particle size, the faster the precipitation rate and the more the precipitation amount. The following performance of 1 fluorescent particle was good while its exposure effect not fine. The precipitation of 3 fluorescent particle was the least obvious, and its following performance and exposure effect were the best with the increase of measurement time in the current PIV system. Conclusions The diameter of tracing particle has significant influence on its following performance and exposure effect in aqueous humor flow. The 3 fluorescent particle is the best tracing particle for the measurement of aqueous humor flow field based on the present PIV system. This study provides certain experimental basis for the aqueous humor flow in vivo by using PIV technology.

 

参考文献:

[1]?Kwon YH, Fingert JH, Kuehn M H, et al. Mechanism of Disease: Primary open-angle glaucoma[J]. New England Journal of Medicine, 2009(11): 1113-1124.

[2]?Pascolini D, Mariotti S P. Global estimates of visual impairment: 2010[J]. British Journal of Ophthalmology, 2012, 96(5):614-618.

[3]?Ethier C R, Johnson M, Ruberti J. Ocular biomechanics and biotransport[J]. Annual Review of Biomedical Engineering, 2004, 6(1):249-273.

[4]?陈琛,?刘晓华. 青光眼相关生物力学研究进展[J]. 北京生物医学工程,?2007, 26(1):92-94.

Chen C,?Liu XH. The progression of the biomechanicai study on glaucoma[J]. Beijing Biomedical Engineering,?2007, 26(1):92-94.

[5]?Stamper RL. Chandler and Grant's Glaucoma. Ophthalmology, 1986, 93(9): 97-98.

[6]?Caprioli J. The ciliary epithelia and aqueous humor[M]//?Tychsen L?.Adler’s Physiology of the Eye: Clinical Application.?9th ed. St. Louis: Mosby-Year Book Inc,1992: 228-247.

[7]?Adrian??RJ. Particle-image techniques for experimental fluid mechanics[J]. Annual Review of Fluid Mechanics, 1991, 23: 261-304.

[8]?范洁川. 近代流动显示技术[M]. 北京:国防工业出版社,?2002.

Fan JC. Modern flow visualization[M].?Beijing:National Defense Industry Press,?2002.

[9] ?尹协振,?续伯钦, 张寒虹. 实验力学[M]. 北京:高等教育出版社, 2012.

Yin?XZ,?Xu BQ,?Zhang HH. Experimental Mechanics[M].?Beijing:Higher Education Press,?2012.

[10] ?沈钧涛,?陈十一. 球形粒子在流体中的跟随性[J]. 空气动力学学报, 1989(1):50-58.

Shen JT,?Chen?SY. The following behaviours of a spherical particle in fiuid flow[J].?Acta Aerodynamica Sinica,?1989(1):50-58.

[11] ?严敬, 杨小林, 邓万权,?等. 示踪粒子跟随性讨论[J]. 农业机械学报,?2005, 36(6): 54-56.

Yan J,?Yang XL, Deng WQ,?et al.?Analysis on following features of tracer particles[J].?Transactions of the Chinese Society for Agricultural Machinery,?2005, 36(6): 54-56.

[12] ?李亚林,?袁寿其,?汤跃,?等. 离心泵内流场PIV测试中示踪粒子跟随性的计算[J].排灌机械工程学报, 2012, 30(1): 6-10.

Li YL,?Yuan SQ,?Tang?Y,?et al. Analysis on tracing ability of PIV seeding particles in flow fields of centrifugal pumps[J].?Journal of Drainage and Irrigation Machinery Engineering, 2012, 30(1): 6-10.

[13] ?沙文慧,?周骛,?蔡小舒. 湍流射流中示踪粒子的跟随性数值模拟分析[J].上海理工大学学报, 2017, 39(2): 103-109.

Sha?WH,?Zhou W,?Cai XS. Numerical study on the flow tracking capability of tracer particles in a turbulent jet[J].?University of Shanghai for Science and Technology, 2017, 39(2): 103-109.

[14] ?杨红玉, 宋红芳, 李林, 等. 基于PIV技术研究眼内房水流动特性的实验设计[J]. 医用生物力学, 2012,28(2): 229-234.

Yang HY,?Song HF,?Li?L,?et al. Experimental design on flow characteristics of aqueous humor based on PIV method[J].?Journal of Medical Biomechanics, 2012,28(2): 229-234.

[15] ?Repetto R, Pralits JO, Siggers JH, et al. Phakic iris-fixated intraocular lens placement in the anterior chamber: effects on aqueous flowphakic iris-fixated intraocular lens placement[J]. Investigative ophthalmology & visual science, 2015, 56(5): 3061-3068.

[16] ?袁寿其,?李亚林,?汤跃,?等.?示踪粒子在离心泵内流场跟随性的影响因素分析[J]. 机械工程学报,?2012,?48(20): 174-181.

Yuan SQ,?Li YL,?Tang?Y,?et al. Analysis on factors influencing following features of tracer particles in centrifugal pumps[J]. Journal of Mechanical Engineering,?2012,?48(20): 174-181.

[17] ?Fitt AD, Gonzalez G. Fluid mechanics of the human eye: aqueous humor flow in the anterior chamber[J]. Bulletin of Mathematical Biology, 2006, 68(1): 53-71.

[18] ?Villamarin A, Roy S, Hasballa R, et al. 3D simulation of the aqueous flow in the human eye[J]. Medical Engineering Physics, 2012, 34(10): 1462-1470.

[19] ?Wang WJ, Qian XQ, Song HF, et al. Fluid and structure coupling analysis of the interaction between aqueous humor and iris[J]. Biomedical Engineering Online, 2016, 15(2): 569-586.

[20] ?王万笔,?敖开忠,?樊建中,?等. 适于磁共振成像研究房水循环兔模型的建立[J]. 放射学实践, 2008, 23(10): 1076-1078.

Wang?WB,?Ao?KZ,?Fan?JZ, et al. Establishment of rabbit model of aqua oculi circulation for MRI study[J].?Radiol Practice, 2008, 23(10): 1076-1078.

[21] ?宋红芳,?杨红玉,?刘志成. 正常兔眼后房压强及前后房压强差值的在体监测[J]. 北京生物医学工程,?2011, 30(4):335-338.

Song HF,?Yang?HY,?Liu?ZC. Surveying of pressure in posterior chamber and pressure difference between anterior and posterior chambers of rabbit eye in vivo[J]. Beijing Biomedical Engineering,?2011, 30(4):335-338.

[22] ?Yang HY , Song HF , Mei X , et al. Experimental research on intraocular aqueous flow by PIV method[J]. Biomedical Engineering Online, 2013, 12(108):1-8.

[23] ?朱志鹏,?秦彬玮,?张英莉,?等. 稀薄气体流动的粒子图像测速实验研究[J]. 2021, 58(1): 38-44

??????Zhu ZP,Qin BW,Zhang YL,et al.?Experimental study on particle image velocimetry of rarefied gas flow[J]. Vacuum,2021, 58(1): 38-44

[24] ?秦俊,?黄晨,?王昕,?等. 基于水模拟回风流场的 PIV 测试粒子跟随性研究[J]. 水资源与水工程学报, 2015, 26(1):143-153.

Qin?J,?Huang?C,?Wang?X,?et al.?Research on flowing behaviors of particle tracers tested by PIV based on water simulating air return flow field[J]. Journal of Water Resources & Water Engineering, 2015, 26(1):143-153.

[25] ?王彦植,?陈方,?刘洪, 等. 高速流动PIV示踪粒子跟随响应特性实验研究[J]. 实验流体力学,?2018, 32(3): 94-99.

Wang YZ,?Chen?F,?Liu?H,?et al.?Experimental investigation on response characteristics of PIV tracer particles in high speed flow[J].?Journal of Experiments in Fluid?Mechanics,?2018, 32(3): 94-99.

[26] ?吴优, 邹燚, 曹斌, 等. 基于PIV技术的粗颗粒在管流中跟随性试验研究[J]. 水动力研究与进展,??2017, 32(6):739-746.

Wu Y,?Zou?Y,?Cao?B,?et al.?Experimental study on coarse particles following behavior in pipeline flow based on PIV technique[J].?Chinese Journal of Hydrodynamics,?2017, 32(6):739-746.

?

服务与反馈:
文章下载】【加入收藏
提示:您还未登录,请登录!点此登录
 
友情链接  
地址:北京安定门外安贞医院内北京生物医学工程编辑部
电话:010-64456508  传真:010-64456661
电子邮箱:llbl910219@126.com