[1 ]孙鑫,钱会南.基于深度卷积网络的中药饮片图像识别[J] .世 界科学技术一中医药现代化,2017,19(2) :218-222.
Sun X, Qian HN. Identification of the images of Chinese herb slices with deep convolutional network [ J ]. Modernization of Traditional Chinese Medicine and Materia Medica-World Science and Technology,2017,19(2) :218-222.
[2 ]陶欧,张燕玲,陈茜,等.基于灰度共生矩阵的中药饮片横切面 图像纹理特征参数的提取[J].世界科学技术一中医药现代 化,2014,16(12) :2531-2537.
Tao 0, Zhang YL, Chen Q, et aL Extraction of texture feature parameter of transverse section in Chinese herbal medicine by gray-level co-occurrence matrix[ J]. Modernization of Traditional Chinese Medicine and Materia Medica-World Science and Technology,2014,16( 12) :2531-2537.
[3]陶欧,林兆洲,张宪宝,等.基于饮片切面图像纹理特征参数的 中药辨识模型研究[J].世界科学技术一中医药现代化,2014,16(12):2558-2562.Tao 0, Lin ZZ, Zhang XB, et al. Research on identification model of Chinese herbal medicine by texture feature parameter of transverse section image [ J ]. Modernization of Traditional Chinese Medicine and Materia Medica-World Science and Technology, 2014,16(12):2558-2562.
[4]夏黎明,沈坚,张荣国,等.深度学习技术在医学影像领域的应 用[J].协和医学杂志,2018,9(1) :10-14.
Xia LM, Shen J, Zhang RG, et al. Application of deep learning in medical imaging research [ J]. Medical Journal of Peking Union Medical College Hospital,2018,9( 1):10-14.
[5 ]张荣磊,田爱奎,谭浩,等.基于卷积神经网络的图像识别算法 研究[J].山东理工大学学报(自然科学版),2018,32( 1):48-51.
Zhang RL,Tian AK,Tan H,et al. Research on image recognition algorithm based on convolutional neural networks [ J]. Journal of Shandong University of Technology ( Natural Science Edition ), 2018,32(1):48-51.
[6 ]林明旺.基于卷积神经网络的鱼类图像识别与分类[J].电子 技术与软件工程,2017(6) :92-93.
[7]秦东辉,周辉,赵雄波,等.基于卷积神经网络图像识别算法的 加速实现方法[J].航天控制,2019,37(1):21-26.
Qin DH, Zhou H, Zhao XB, et al. Accelerated implementation method of image recognition algorithm based on convolutional neural network[ J]. Aerospace Control,2019,37(1) :1-26.
[8 ] Liu JX,Xu BL, Shen LL, et al. HEp-2 cell classification based on a deep autoencoding-classification convolutional neural network [ C ] // 2017 IEEE 14th International Symposium on Biomedical Imaging. Melbourne, VIC , Australia: IEEE Press, 2017:1019-1023.
[9 ] Windrim L, Melkumyan A, Murphy RJ, et al. Pre-training for hyperspectral convolutional neural network classification [ J ]. IEEE Transactions on Geoscience & Remote Sensing, 2018,56 (5) :2798-2810.
[10]刘伟,陈鸿昶,黄瑞阳.基于Tree-based CNN的关系抽取[J]. 中文信息学报,2018,32( 11) :34-40.
Liu W, Chen HC , Huang RY. Neural relation extraction via treebased CNN[ J]. Journal of Chinese Information Processing,2018, 32( 11):34-40.
[11 ] Jonghong Kim, Gil-Jin Jang, Minho Lee. Investigation of the efficiency of unsupervised learning for multi-task classification in convolutional neural network [ M ]//International Conference on Neural Information Processing. ICONIP 2016. Lecture Notes in Computer Science. Switzerland: Springer, Cham, 2016, 9949:547-554
?
|