设为首页 |  加入收藏
首页首页 期刊简介 消息通知 编委会 电子期刊 投稿须知 广告合作 联系我们
基于深度学习的中药材饮片图像识别

Identification of the images of Chinese herb slices with deep learning

作者: 刘加峰  高子啸段元民  李海云  石宏理  
单位:首都医科大学生物医学工程学院(北京100069) 通信作者:石宏理,副教授。E-mail: shl@ccmu.edu.cn <p>&nbsp;</p>
关键词: 中药饮片;图像识别;深度学习;卷积神经网络;学习算法  
分类号:R318. 04 <p>&nbsp;</p>
出版年·卷·期(页码):2021·40·6(605-608)
摘要:

目的建立一个基于深度卷积神经网络的中药饮片图像检测识别系统。该系统对于正常 情况下采集的中药饮片图像,能够自动检测识别出相应类别的中药饮片。方法本文使用了 SSD目标检 测算法,构建数据集,利用标注工具进行了标注,然后在云端colab上进行调试代码、训练、测试、验证。 结果对于3种中药饮片(枸杞、甘草、陈皮)进行识别验证,平均识别率高于80%,样本集足够大可以有 效提高识别准确率。结论本文将卷积神经网络应用于中药材识别中,将传统的中医学与新兴的深度学 习网络相结合,识别中药饮片的效率高,速度快,准确率高,可应用于绝大部分需要识别中药饮片类别的 场景。

 

Objective A deep learning-convolutional neural network based image detection and recognition system for Chinese herbal slices is built. The system is capable of automatically detecting and recognizing categories and locating the images of traditional Chinese medicine drinking tablets that contain multiple categories established under simulated normal conditions. Methods In this paper, we used the SSD target detection algorithm ? established the image database, labeled them using the labeling tool, and then debugged the code, trained, tested, and verified them on the cloud colab. Results For the three Chinese herbal slices ( Chinese wolfberry, licorice, and pericarpium citri reticulatae) , the average recognition rate was more than 80%, and in particular, if the sample set was large enough then the recognition accuracy was improved. Conclusions In this paper, convolution neural network is applied to the identification of traditional Chinese herbs, which combines traditional Chinese medicine with the new deep learning network. It has high efficiency, fast speed and high accuracy. It can be applied to most scenes that need to identify the categories of traditional Chinese herbs.

 

参考文献:

[1 ]孙鑫,钱会南.基于深度卷积网络的中药饮片图像识别[J] .世 界科学技术一中医药现代化,2017,19(2) :218-222.

Sun X, Qian HN. Identification of the images of Chinese herb slices with deep convolutional network [ J ]. Modernization of Traditional Chinese Medicine and Materia Medica-World Science and Technology,2017,19(2) :218-222.

[2 ]陶欧,张燕玲,陈茜,等.基于灰度共生矩阵的中药饮片横切面 图像纹理特征参数的提取[J].世界科学技术一中医药现代 化,2014,16(12) :2531-2537.

Tao 0, Zhang YL, Chen Q, et aL Extraction of texture feature parameter of transverse section in Chinese herbal medicine by gray-level co-occurrence matrix[ J]. Modernization of Traditional Chinese Medicine and Materia Medica-World Science and Technology,2014,16( 12) :2531-2537.

[3]陶欧,林兆洲,张宪宝,等.基于饮片切面图像纹理特征参数的 中药辨识模型研究[J].世界科学技术一中医药现代化,2014,16(12):2558-2562.Tao 0, Lin ZZ, Zhang XB, et al. Research on identification model of Chinese herbal medicine by texture feature parameter of transverse section image [ J ]. Modernization of Traditional Chinese Medicine and Materia Medica-World Science and Technology, 2014,16(12):2558-2562.

[4]夏黎明,沈坚,张荣国,等.深度学习技术在医学影像领域的应 用[J].协和医学杂志,2018,9(1) :10-14.

Xia LM, Shen J, Zhang RG, et al. Application of deep learning in medical imaging research [ J]. Medical Journal of Peking Union Medical College Hospital,2018,9( 1):10-14.

[5 ]张荣磊,田爱奎,谭浩,等.基于卷积神经网络的图像识别算法 研究[J].山东理工大学学报(自然科学版),2018,32( 1):48-51.

Zhang RL,Tian AK,Tan H,et al. Research on image recognition algorithm based on convolutional neural networks [ J]. Journal of Shandong University of Technology ( Natural Science Edition ), 2018,32(1):48-51.

[6 ]林明旺.基于卷积神经网络的鱼类图像识别与分类[J].电子 技术与软件工程,2017(6) :92-93.

[7]秦东辉,周辉,赵雄波,等.基于卷积神经网络图像识别算法的 加速实现方法[J].航天控制,2019,37(1):21-26.

Qin DH, Zhou H, Zhao XB, et al. Accelerated implementation method of image recognition algorithm based on convolutional neural network[ J]. Aerospace Control,2019,37(1) :1-26.

[8 ] Liu JX,Xu BL, Shen LL, et al. HEp-2 cell classification based on a deep autoencoding-classification convolutional neural network [ C ] // 2017 IEEE 14th International Symposium on Biomedical Imaging. Melbourne, VIC , Australia: IEEE Press, 2017:1019-1023.

[9 ] Windrim L, Melkumyan A, Murphy RJ, et al. Pre-training for hyperspectral convolutional neural network classification [ J ]. IEEE Transactions on Geoscience & Remote Sensing, 2018,56 (5) :2798-2810.

[10]刘伟,陈鸿昶,黄瑞阳.基于Tree-based CNN的关系抽取[J]. 中文信息学报,2018,32( 11) :34-40.

Liu W, Chen HC , Huang RY. Neural relation extraction via treebased CNN[ J]. Journal of Chinese Information Processing,2018, 32( 11):34-40.

[11 ] Jonghong Kim, Gil-Jin Jang, Minho Lee. Investigation of the efficiency of unsupervised learning for multi-task classification in convolutional neural network [ M ]//International Conference on Neural Information Processing. ICONIP 2016. Lecture Notes in Computer Science. Switzerland: Springer, Cham, 2016, 9949:547-554

?

服务与反馈:
文章下载】【加入收藏
提示:您还未登录,请登录!点此登录
 
友情链接  
地址:北京安定门外安贞医院内北京生物医学工程编辑部
电话:010-64456508  传真:010-64456661
电子邮箱:llbl910219@126.com