设为首页 |  加入收藏
首页首页 期刊简介 消息通知 编委会 电子期刊 投稿须知 广告合作 联系我们
生物可降解丝素蛋白在骨科中的应用与进展

Application and progress of biodegradable silk fibroin in orthopaedics

作者: 贾明鍛  闫景龙  
单位:哈尔滨医科大学附属第二医院(哈尔滨150081)&nbsp; <p>通信作者:闫景龙。E-mail: gw6-yjl@hotmail.com</p> <p>&nbsp;</p>
关键词: 丝素蛋白;组织工程;骨肿瘤;骨缺损;骨感染  
分类号:R318. 08 <p>&nbsp;</p>
出版年·卷·期(页码):2021·40·6(629-634)
摘要:

组织工程的三要素分别是支架材料、种子细胞和生长因子,其中支架材料在组织工程中起 到关键的作用。骨组织工程中最常用支架材料有透明质酸、海藻酸钠、壳聚糖、聚乳酸、聚氧基丙烯酸 酯、胶原蛋白和聚己内酯等,但现阶段以上材料在骨科临床实际应用中都各自面临问题,比如壳聚糖亲 水性过强、降解速度快,海藻酸钠、胶原蛋白力学性能差等,因此,寻求一种更合适的支架材料成为研究 的重点方向。丝素蛋白作为一种天然高分子材料,广泛存在于自然界中,具有价格低、易获取、可降解 性、低毒性的优点。以丝素蛋白为材料的骨组织支架在骨科中发挥了巨大的作用,有望在未来给更多的 骨病患者带来福音。本文综述丝素蛋白的组成结构和理化性质,阐述了不同类型丝素蛋白支架在骨组 织修复中的应用,总结了丝素蛋白在治疗骨肿瘤和预防骨感染领域的国内外最新研究进展,并展望丝素 蛋白材料在骨科中的发展前景和应用趋势,为丝素蛋白材料应用于生物医学工程和临床提供有利参考。

 

The three elements of tissue engineering are scaffold material, seed cell and growth factor. Scaffold material plays a key role in tissue engineering. Hyaluronic acid, sodium alginate, chitosan, polylactic acid, cyanoacrylate, collagen and polycaprolactone are the most commonly used scaffolds in bone tissue engineering. However, at this stage, the above scaffolds are facing their own problems in the clinical application of orthopedics, such as strong hydrophilicity and rapid degradation of chitosan, poor mechanical properties of sodium alginate and collagen, Therefore, to find a more suitable scaffold material has become the focus of research. Silk fibroin, as a kind of natural polymer material, widely exists in nature, with the advantages of low price, easy access, degradability and low toxicity. Silk fibroin based bone tissue scaffolds play an important role in orthopedics, which is expected to bring good news to more patients with bone diseases in the future. This paper reviews the composition, structure and physicochemical properties of silk fibroin, expounds the application of different types of silk fibroin scaffolds in bone tissue repair, summarizes the latest research progress of silk fibroin in the treatment of bone tumor and prevention of bone infection at home and abroad, and looks forward to the development prospect and application trend of silk fibroin materials in orthopedics, It provides a good reference for the application of silk fibroin in biomedical engineering and clinical.

 

参考文献:

[1] Tang S, Shajudeen P, Tasciotti E, et al. Identification of ultrasound imaging markers to quantify long bone regeneration in a segmental tibial defect sheep model in vivo[J]. Scientific Reports, 2020,10(1):13646.

[2] Karalashvili L, Kakabadze A, Uhryn M, et al. Bone grafts for reconstruction of bone defects (review)[J]. Georgian Medical?News, 2018(282):44-49.

[3] Reddy L, Murugan D, Mullick M, et al. Recent approaches for angiogenesis in search of successful tissue engineering and regeneration[J]. Current Stem Cell Research & Therory, 2020,15(2):111-134.

[4] Wan Z, Zhang P, Liu Y, et al. Four-dimensional bioprinting: current developments and applications in bone tissue engineering[J]. Acta Biomaterialia, 2020,101: 26-42.

[5] Xue J, Gao HL, Wang XY, et al. Bioinspired unidirectional silk fibroin-silver compound nanowire composite scaffold via interface-mediated in situ synthesis[J]. Angewandte Chemie International Edition, 2019,58(40): 14152-14156.

[6] Nguyen TP, Nguyen QV, Nguyen VH, et al. Silk Fibroin-Based Biomaterials for Biomedical Applications: A Review[J]. Polymers, 2019,11(12): 1933.

[7] Wang Y, Kim BJ, Peng B, et al. Controlling silk fibroin conformation for dynamic, responsive, multifunctional, micropatterned surfaces[J]. PNAS, 2019,116(43):21361-21368.

[8] Li K, Li P, Fan Y. The assembly of silk fibroin and graphene-based nanomaterials with enhanced mechanical/conductive properties and their biomedical applications[J]. Journal of Materials Chemistry. B, 2019,7(44): 6890-6913.

[9] Bai X, Yuan W. Formation of natural silk and progress in artificial spinning[J]. Chinese Journal of Biotechnology, 2020,36(9): 1767-1778.

[10] Xu L, Weatherbee-Martin N, Liu XQ, et al. Recombinant Silk Fiber Properties Correlate to Prefibrillar Self-Assembly[J]. Small, 2019,15(12): e1805294.

[11] 赵亮. 基于双层蛛丝蛋白血管支架和干细胞构建小直径组织工程血管及其修复动脉缺损的研究[D]. 福州: 福建师范大学, 2014.

????Zhao L. Study on the construction of small diameter tissue engineering blood vessels and artery defect repair based on bilayer spider silk protein vascular scaffold and stem cells[D]. Fuzhou: Fujian Normal University, 2014.

[12] Chang Y, Sun X, Li Q, et al. Silk fibroin scaffold as a potential choice for female pelvic reconstruction: a study on the biocompatibility in abdominal wall, pelvic, and vagina[J]. Microscopy Research and Technology, 2017,80(3): 291-297.

[13] Zhuang Y, Zhang Q, Feng J, et al. The effect of native silk fibroin powder on the physical properties and biocompatibility of biomedical polyurethane membrane[J]. Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine, 2017,231(4): 337-346.

[14] Meng L, Shao C, Cui C, et al. Autonomous self-healing silk fibroin injectable hydrogels formed via surfactant-free hydrophobic association[J]. ACS Applied Materials & Interfaces, 2020,12(1): 1628-1639.

[15] Wang Y, Fan S, Li Y, et al. Silk fibroin/sodium alginate composite porous materials with controllable degradation[J]. International Journal of Biological Macromolecules, 2020,150: 1314-1322.

[16] Chen W, Xu Y, Li H, et al. Tanshinone IIA delivery silk fibroin scaffolds significantly enhance articular cartilage defect repairing via promoting cartilage regeneration[J]. ACS Applied Materials & Interfaces, 2020,12(19): 21470-21480.

[17] Singh YP,?Bhardwaj N, Mandal BB. Potential of agarose/silk fibroin blended hydrogel for in vitro cartilage tissue engineering[J]. ACS applied materials & interfaces, 2016,8(33): 21236-21249.

[18] Liu J, Yang B, Li M, et al. Enhanced dual network hydrogels consisting of thiolated chitosan and silk fibroin for cartilage tissue engineering[J]. Carbohydrate Polymers, 2020,227: 115335.

[19] Li Y, Liu Y, Guo Q. Silk fibroin hydrogel scaffolds incorporated with chitosan nanoparticles repair articular cartilage defects by regulating TGF-β1 and BMP-2[J]. Arthritis Research & Therory, 2021,23(1): 50.

[20] Annibali O, Petrucci MT, Santini D, et al. Alkaline phosphatase (alp) levels in multiple myeloma and solid cancers with bone lesions: Is there any difference?[J]. Journal of Bone Oncology, 2021,26: 100338.

[21] Burger D, Beaumont M, Rosenau T, et al. Porous silk fibroin/cellulose hydrogels for bone tissue engineering via a novel combined process based on sequential regeneration and porogen leaching[J]. Molecules, 2020,25(21): 5097.

[22] Kundu B, Brancato V, Oliveira JM, et al. Silk fibroin promotes mineralization of gellan gum hydrogels[J]. International Journal of Biological Macromolecules, 2020,153: 1328-1334.

[23] Yang Y, Feng Y, Qu R, et al. Synthesis of aligned porous polyethylene glycol/silk fibroin/hydroxyapatite scaffolds for osteoinduction in bone tissue engineering[J]. Stem Cell Research& Therory, 2020,11(1): 522.

[24] Gandhimathi C, Quek YJ, Ezhilarasu H, et al. Osteogenic differentiation of mesenchymal stem cells with silica-coated gold nanoparticles for bone tissue engineering[J]. International Journal of Molelular Sciences, 2019,20(20): 5135.

[25] Lawson S, Alwakwak AA, Rownaghi AA, et al. Gel-print-grow: a new way of 3D printing metal-organic frameworks[J]. ACS Applied Materials & Interfaces, 2020,12(50): 56108-56117.

[26] Wang Q, Han G, Yan S, et al. 3D Printing of silk fibroin for biomedical applications[J]. Materials, 2019,12(3): 504.

[27] Hong H, Seo YB, Kim DY, et al. Digital light processing 3D printed silk fibroin hydrogel for cartilage tissue engineering[J]. Biomaterials, 2020,232:119679.

[28] Li Z, Wu N, Cheng J, et al. Biomechanically, structurally and functionally meticulously tailored polycaprolactone/silk fibroin scaffold for meniscus regeneration[J]. Theranostics, 2020,10(11):5090-5106.

[29] Ni T, Liu M, Zhang Y, et al. 3D bioprinting of bone marrow mesenchymal stem cell-laden silk fibroin double network scaffolds for cartilage tissue repair[J]. Bioconjugate Chemistry, 2020,31(8):1938-1947.

[30] Farokhi M, Mottaghitalab F, Reis RL, et al. Functionalized silk fibroin nanofibers as drug carriers: advantages and challenges[J]. Journal of Controlled Release, 2020,321:324-347.

[31] Subia?B,?Dey?T,?Sharma?S,?et?al.?Target?specific?delivery?of?anticancer?drug?in?silk?fibroin?based?3D?distribution?model?of?bone-breast?cancer?cells[J].?ACS?Applied?Materials &?Interfaces,?2015,7(4):2269-2279.?

[32] Pierantoni L, Ribeiro VP, Costa L, et al. Horseradish peroxidase-crosslinked calcium-containing silk fibroin hydrogels as artificial matrices for bone cancer research[J]. Macromolecular Bioscience, 2021,21(4): e2000425.

[33] 文强强, 刘岩, 苏子龙,等. 金黄色葡萄球菌骨髓炎发病机制的研究进展[J]. 实用骨科杂志,2020,26(10):901-905.

[34] Ingoe HM, Coleman E, Eardley W, et al. Systematic review of systematic reviews for effectiveness of internal fixation for flail chest and rib fractures in adults[J]. BMJ Open, 2019,9(4): e023444.

[35] Fathi M, Akbari B, Taheriazam A. Antibiotics drug release controlling and osteoblast adhesion from Titania nanotubes arrays using silk fibroin coating[J]. Materials Science and Engineering: C, 2019,103: 109743.

[36] Wenhao Z, Zhang T, Yan J, et al. In vitro and in vivo evaluation of structurally-controlled silk fibroin coatings for orthopedic infection and in-situ osteogenesis[J]. Acta Biomaterialia, 2020,116: 223-245.

?

服务与反馈:
文章下载】【加入收藏
提示:您还未登录,请登录!点此登录
 
友情链接  
地址:北京安定门外安贞医院内北京生物医学工程编辑部
电话:010-64456508  传真:010-64456661
电子邮箱:llbl910219@126.com