[1]?Bian Y, Zheng R, Bayer FP, et al. Robust, reproducible and quantitative analysis of thousands of proteomes by micro-flow LC–MS/MS[J]. Nature Communications, 2020, 11(1): 1-12.
[2]?Miller RM, Millikin RJ, Hoffmann CV, et al. Improved protein inference from multiple protease bottom-up mass spectrometry data[J]. Journal of Proteome Research, 2019, 18(9): 3429-3438.
[3]?Gillet LC, Leitner A, Aebersold R. Mass spectrometry applied to bottom-up proteomics: entering the high-throughput era for hypothesis testing[J]. Annual Review of Analytical Chemistry, 2016, 9: 449-472.
[4]?Matzke MM, Brown JN, Gritsenko MA, et al. A comparative analysis of computational approaches to relative protein quantification using peptide peak intensities in label-free LC-MS proteomics experiments[J]. Proteomics, 2013, 13(3-4): 493-503.
[5]?Keshishian H, Addona T, Burgess M, et al. Quantitative, multiplexed assays for low abundance proteins in plasma by targeted mass spectrometry and stable isotope dilution[J]. Molecular & Cellular Proteomics, 2007, 6(12):2212-2229.
[6]?Tiambeng TN, Roberts DS, Brown KA, et al. Nanoproteomics enables proteoform-resolved analysis of low-abundance proteins in human serum[J]. Nature Communications, 2020, 11(1): 1-12.
[7]?Berna M, Ackermann B. Increased throughput for low-abundance protein biomarker verification by liquid chromatography/tandem mass spectrometry[J]. Analytical Chemistry, 2009, 81(10): 3950-3956.
[8]?Polpitiya AD, Qian WJ, Jaitly N, et al. DAnTE: A statistical tool for quantitative analysis of -omics data[J]. Bioinformatics, 2008, 24(13): 1556-1558.
[9]?Grossmann J, Roschitzki B, Panse C, et al. Implementation and evaluation of relative and absolute quantification in shotgun proteomics with label-free methods[J]. Journal of Proteomics, 2010, 73(9): 1740-1746.
[10]?Blein-Nicolas M, Xu H, de Vienne D, et al. Including shared peptides for estimating protein abundances: A significant improvement for quantitative proteomics[J]. Proteomics, 2012, 12(18): 2797-2801.
[11]?江丹阳, 郑浩然. 针对无标签鸟枪法蛋白质定量的新方法[J]. 北京生物医学工程, 2018, 37(4): 351-355, 391.
Jiang DY, Zheng HR. A new approach to protein quantification in label-free shotgun proteomics[J]. Beijing Biomedical Engineering, 2018, 37(4): 351-355, 391.
[12]?Jacob L, Combes F, Burger T. PEPA test: fast and powerful differential analysis from relative quantitative proteomics data using shared peptides[J]. Biostatistics, 2019, 20(4): 632-647.
[13]?He B, Shi J, Wang X, et al. Label-free absolute protein quantification with data-independent acquisition[J]. Journal of Proteomics, 2019, 200: 51-59.
[14]?Dost B, Bandeira N, Li X, et al. Accurate mass spectrometry based protein quantification via shared peptides[J]. Journal of Computational Biology, 2012, 19(4): 337-348.
[15]?Giansanti P, Tsiatsiani L, Low TY, et al. Six alternative proteases for mass spectrometry-based proteomics beyond trypsin[J]. Nature Protocols, 2016, 11(5): 993-1006.
[16]?Gerster S, Kwon T, Ludwig C, et al. Statistical Approach to Protein Quantification[J]. Molecular & Cellular Proteomics, 2014, 13(2): 666-677.
[17]?Navarro P, Kuharev J, Gillet LC, et al. A multicenter study benchmarks software tools for label-free proteome quantification[J]. Nature Biotechnology, 2016, 34(11): 1130-1136.
[18]?Collins BC, Hunter CL, Liu Y, et al. Multi-laboratory assessment of reproducibility, qualitative and quantitative performance of SWATH-mass spectrometry[J]. Nature Communications, 2017, 8(1): 1-12.
[19]?Ludwig C, Gillet L, Rosenberger G, et al. Data-independent acquisition-based SWATH-MS for quantitative proteomics: a tutorial[J]. Molecular Systems Biology, 2018, 14(8): e8126.
?
|