设为首页 |  加入收藏
首页首页 期刊简介 消息通知 编委会 电子期刊 投稿须知 广告合作 联系我们
基于拓扑算法的肝脏肿瘤消融术前路径规划系统

A preoperative path planning system for liver tumor ablation based on topological algorithms

作者: 徐旭  朱文文  夏栋  巫彤宁  陈新华  李从胜  
单位:中国信息通信研究院泰尔终端实验室(北京100191) 浙江大学附属第一医院(杭州 310003) <p>通信作者:李从胜,高级工程师。E-mail:&nbsp;licongsheng@caict.ac.cn</p> <p>&nbsp;</p>
关键词: 肝肿瘤;计算机辅助;  消融针;  路径规划;  临床约束条件  
分类号:R318.04 <p>&nbsp;</p>
出版年·卷·期(页码):2022·41·2(111-117)
摘要:

目的 探索提高肝癌消融术路径规划的准确性和肝癌消融术疗效的方法。方法 研究结合病患个体解剖特征的多约束进针路径规划模型,优化符合病患病灶分布特征的术前方案。本文提出深度学习模型以提高患者腹部组织器官重建精度,并设计拓扑优化算法进行多约束进针路径规划。结果 系统通过重建患者腹部多组织数字模型,分析病灶和周围组织位置关系,制定满足临床条件的进针路径。结论 本文所提出的肝肿瘤消融术前路径规划,可实现融合病患个体特征的可行手术穿刺方案制定,临床40例肝肿瘤患者术后增强影像显示病灶均完全消融,技术有效率达100%。

 

Objective Explore ways to improve the accuracy of ablation pathway planning and the efficacy of ablation for hepatocellular carcinoma. Methods A multi-constrained approach path planning model incorporating individual patient anatomical features is investigated to optimize a preoperative plan that matches the patient's lesion distribution characteristics. This paper proposes a deep learning model to improve the accuracy of the patient's abdominal tissue and organ reconstruction, and designs a topology optimization algorithm for multi-constrained approach path planning. Results By reconstructing a multi-tissue digital model of the patient's abdomen, the system analyses the relationship between the location of the lesion and the surrounding tissues and develops a needle path that meets the clinical conditions. Conclusions The preoperative pathway planning for liver tumor ablation proposed in this paper enables the development of a feasible surgical puncture plan that incorporates individual patient characteristics. 40 patients with liver tumors were completely ablated on postoperative enhanced imaging, with a technical efficiency of 100%.

 

参考文献:

[1]?Siegel RL, Miller KD, Jemal A, et al.?Cancer Statistics, 2019?[J]. CA: A Cancer Journal for Clinicians, 2019,?69(1): 7–34.

[2]?Guo A,?Pomenti S,?Wattacheril J.?Health disparities in screening, diagnosis, and treatment of hepatocellular carcinoma?[J]. Clinical?Liver Disease(Hoboken),?2021, 17 (5): 353–358.

[3]?陈敏山, 陈敏华, 叶胜龙,等.原发性肝癌局部消融治疗的专家共识[J].临床肿瘤学杂志,2011,16(1):?70-73.

[4]?张睿,周著黄,吴薇薇,等.肝肿瘤热消融治疗穿刺路径规划算法研究综述[J]. 北京工业大学学报, 2020, 46(11):1300-1314.

Zhang R, Zhou ZH, Wu WW,?et al. Review of needle?trajectory planning algorithms for?liver tumor?thermal ablation[J]. Journal of Beijing University of Technology, 2020, 46(11):?1300-1314.

[5]?Chu KF, Dupuy?DE.?Thermal ablation of tumours: biological mechanisms and advances in therapy. [J]. Nature Reviews Cancer, 2014, 14: 199-208.

[6]?Li S,?Yao J,?Navab N.?Guest Editorial: special issue on spine imaging, image-based modeling, and image guided intervention[J]. IEEE Transactions on Medical Imaging, 2015, 34 (8): 1625–1626.

[7]?Butz T, Warfield SK, Tuncali K, et al. Pre and intra-operative planning and simulation of percutaneous tumor ablation?[M]//?Medical Image Computing and Computer- Assisted Intervention?– MICCAI 2000. Lecture Notes in Computer Science.?Berlin : Springer, Berlin, Heidelberg,?2000,?1935: 317-326.?

[8]?Schumann C, Rieder C, Haase S, et al. Interactive access path exploration for planning of needle-based interventions [C]//?Proceedings of the CURAC Annual Meeting. La Clusaz: CEUR, 2013: 103-106.

[9]?Li C,?Yao G,?Xu X,?et al. DCSegNet: deep learning framework based on divide-and-conquer method for liver segmentation[J]. IEEE Access, 2020,?8: 146838–14846.

[10]?Zhang Y,?Pan X,?Li C,?et al. 3D liver and tumor segmentation with CNNs based on region and distance metrics[J]. Applied Sciences, 2020, 10 (11): 3794.

[11]?Xia D, Xu X, Zhang?Y. Segmentation and Reconstruction of Abdominal Multi-Tissues Based on Multiple Algorithms and Networks[J]. Journal of Physics: Conference Series, 2021,?1920: 012060.

[12]?Milletari F, Navab N, Ahmadi SA. V-net: fully convolutional neural networks for volumetric medical image segmentation [M]// 2016 Fourth International Conference on 3D Vision (3DV). Stanford, CA, USA: IEEE Press, 2016: 565-571.

[13]?Karimi D, Salcudean SE.?Reducing the Hausdorff distance in medical image segmentation with convolutional neural networks[J].?IEEE Transactions on Medical Imaging, 2020, 39(2): 499–513.

[14]?Xue Y, Tang H, Qiao Z, et al. Shape-aware organ segmentation by predicting signed distance maps[J]. Proceedings of the AAAI Conference on Artificial Intelligence,2020, 34(7):?12565–12572.

[15]?Schumann C, Bieberstein J, Braunewell S, et al. Visualization support for the planning of hepatic needle placement [J]. International Journal of Computer Assisted Radiology and Surgery, 2012, 7: 191-197.

Schumann C, Rieder C, Haase S,?et al.?Interactive access path exploration for planning of needle-based interventions[C]//?Proceedings of the CURAC Annual Meeting. La Clusaz, FR:?CURAC,?2013: 103-106.

?

服务与反馈:
文章下载】【加入收藏
提示:您还未登录,请登录!点此登录
 
友情链接  
地址:北京安定门外安贞医院内北京生物医学工程编辑部
电话:010-64456508  传真:010-64456661
电子邮箱:llbl910219@126.com