[1] Kandiyote NS, Avisdris T, Arnusch CJ, et al. Grafted polymer coatings enhance fouling inhibition by an antimicrobial peptide on reverse osmosis membranes[J]. Langmuir: the ACS Journal of Surfaces and Colloids, 2019, 35(5): 1935-1943.
[2] Mishra B, Reiling S, Zarena D, et al. Host defense antimicrobial peptides as antibiotics: design and application strategies[J]. Current Opinion in Chemical Biology, 2017, 38: 87-96.
[3] Magana M, Pushpanathan M, Santos AL, et al. The value of antimicrobial peptides in the age of resistance[J]. The Lancet Infectious Diseases, 2020, 20(9): e216-e230.
[4] Nakatsuji T, Gallo RL. Antimicrobial peptides: old molecules with new ideas[J]. Journal of Investigative Dermatology, 2012, 132(3): 887-895.
[5] Luong HX, Thanh TT, Tran TH. Antimicrobial peptides—advances in development of therapeutic applications[J]. Life Sciences, 2020, 260: 118407.
[6] Lazzaro BP, Zasloff M, Rolff J. Antimicrobial peptides: application informed by evolution[J]. Science, 2020, 368(6490):?eaau5480.
[7] Manrique-Moreno M, Suwalsky M, Pati?o-González E, et al. Interaction of the antimicrobial peptide ΔM3 with the?Staphylococcus aureus?membrane and molecular models[J]. Biochimica et Biophysica Acta?(BBA) -Biomembranes, 2021, 1863(2): 183498.
[8] Qiao SC, Wu DL, Li ZH, et al. The combination of multi-functional ingredients-loaded hydrogels and three-dimensional printed porous titanium alloys for infective bone defect treatment[J]. Journal of Tissue Engineering, 2020, 11(2):204173142096579.
[9] Lu HP, Liu Y, Guo J, et al. Biomaterials with antibacterial and osteoinductive properties to repair infected bone defects[J]. International Journal of Molecular Sciences, 2016, 17(3): 334.
[10] Mura M, Wang JP, Zhou YH, et al. The effect of amidation on the behaviour of antimicrobial peptides[J]. European Biophysics Journal with Biophysics Letters, 2016, 45(3): 195-207.
[11] Matsuzaki K, Murase O, Fujii N, et al. An antimicrobial peptide, magainin 2, induced rapid flip-flop of phospholipids coupled with pore formation and peptide translocation[J]. Biochemistry, 1996, 35(35): 11361-11368.
[12] Shen XK, Al-Baadani MA, He HL, et al. Antibacterial and osteogenesis performances of LL37-loaded titania nanopores in vitro and in vivo[J]. International Journal of ??Nanomedicine, 2019, 14: 3043-3054.
[13] Choi H, Yang Z, Weisshaar JC. Oxidative stress induced in E. coli by the human antimicrobial peptide LL-37[J]. PLoS Pathogens, 2017, 13(6): e1006481.
[14] Epand RM, Vogel HJ. Diversity of antimicrobial peptides and their mechanisms of action[J]. Biochimica et Biophysica Acta?(BBA)-Biomembranes, 1999, 1462(1-2): 11-28.
[15] Kawauchi K, Yagihashi A, Tsuji N, et al. Human β-defensin-3 induction in H pylori-infected gastric mucosal tissues[J]. World Journal of Gastroenterology, 2006, 12(36): 5793-5797.
[16] Bayer A, Lammel J, Tohidnezhad M, et al. The antimicrobial peptide human beta-defensin-3 is induced by platelet-released growth factors in primary keratinocytes[J]. Mediators of Inflammation, 2017, 2017:6157491.
[17] Ageitos JM, Sánchez-Pérez A, Calo-Mata P, et al. Antimicrobial peptides (AMPs): ancient compounds that represent novel weapons in the fight against bacteria[J]. Biochemical?Pharmacology, 2017, 133:117-138.
[18] ?Falcao CB, Pérez-Peinado C, de la Torre BG, et al. Structural dissection of crotalicidin, a rattlesnake venom cathelicidin, retrieves a fragment with antimicrobial and antitumor activity[J]. Journal of Medicinal Chemistry, 2015, 58(21): 8553-8563.
[19] Rezaei N, Hamidabadi HG, Khosravimelal S, et al. Antimicrobial peptides-loaded smart chitosan hydrogel: release behavior and antibacterial potential against antibiotic resistant clinical isolates[J]. International Journal of Biological Macromolecules, 2020, 164: 855-862.
[20] Dijksteel GS, Ulrich MMW, Middelkoop E, et al. Review: lessons learned from clinical trials using antimicrobial peptides (AMPs)[J]. Frontiers in?Microbiology, 2021, 12:?616979.
[21] Kumar P, Kizhakkedathu JN, Straus SK. Antimicrobial peptides: diversity, mechanism of action and strategies to improve the activity and biocompatibility in vivo[J]. Biomolecules, 2018, 8(1): 4.
[22] Lee TH, Hall KN, Aguilar MI. Antimicrobial peptide structure and mechanism of action: a focus on the role of membrane structure[J]. Current Topics in Medicinal Chemistry, 2016, 16(1): 25-39.
[23] Wiener MC, White SH. Structure of a fluid dioleoylphosphatidylcholine bilayer determined by joint refinement of x-ray and neutron diffraction data. III. complete structure[J]. Biophysical Journal, 1992, 61(2): 434-447.
[24] Mai S, Mauger MT, Niu LN, et al. Potential applications of antimicrobial peptides and their mimics in combating caries and pulpal infections[J]. Acta Biomaterialia, 2017, 49: 16-35.
[25] Salick DA, Kretsinger JK, Pochan DJ, et al. Inherent antibacterial activity of a peptide-based beta-hairpin hydrogel[J]. Journal of the American Chemical Society, 2007, 129(47): 14793-14799.
[26] Shai Y. Mechanism of the binding, insertion and destabilization of phospholipid bilayer membranes by alpha-helical antimicrobial and cell non-selective membrane-lytic peptides[J]. Biochimica et Biophysica Acta?(BBA) -Biomembranes, 1999, 1462(1-2): 55-70.
[27] He JC, Chen JJ, Hu GS, et al. Immobilization of an antimicrobial peptide on silicon surface with stable activity by click chemistry[J]. Journal of Materials Chemistry B, 2018, 6(1): 68-74.
[28] Caplin JD, García AJ.?Implantable antimicrobial biomaterials for local drug delivery in bone infection models[J]. Acta Biomaterialia, 2019, 93: 2-11.
[29] Gatin L, Mghir AS, Mouton W, et al. Colistin-containing cement spacer for treatment of experimental carbapenemase-producing Klebsiella pneumoniae?prosthetic joint infection[J]. International Journal of Antimicrobial Agents, 2019, 54(4): 456-462.
[30] Faber C, Stallmann HP, Lyaruu DM, et al. Comparable efficacies of the antimicrobial peptide human lactoferrin 1-11 and gentamicin in a chronic methicillin-resistant staphylococcus aureus osteomyelitis model[J]. Antimicrobial Agents and Chemotherapy, 2005, 49(6): 2438-2444.
[31] Vaishya R, Chauhan M, Vaish A. Bone cement[J]. Journal of Clinical Orthopaedics and Trauma, 2013, 4(4): 157-163.
[32] Trzcińska Z, Bruggeman M, Ijakipour H, et al. Polydopamine linking substrate for amps: characterisation and stability on Ti6Al4V[J]. Materials (Basel), 2020, 13(17): 3714.
[33] Chen J, Shi X, Zhu Y, et al. On-demand storage and release of antimicrobial peptides using Pandora's box-like nanotubes gated with a bacterial infection-responsive polymer[J]. Theranostics, 2020, 10(1): 109-122.
[34] Chen J, Hu G, Li T, et al. Fusion peptide engineered "statically-versatile" titanium implant simultaneously enhancing anti-infection, vascularization and osseointegration[J]. Biomaterials, 2021, 264: 120446. ?
[35] Pal P, Nguyen QC, Benton AH, et al. Drug-loaded elastin-like polypeptide-collagen hydrogels with high modulus for bone tissue engineering[J]. Macromolecular Bioscience, 2019, 19(9): e1900142.
[36] Yang GL, Huang TB, Wang Y, et al. Sustained release of antimicrobial peptide from self-assembling hydrogel enhanced osteogenesis[J]. Journal of Biomaterials Science, Polymer Edition, 2018, 29(15): 1812-1824.
[37] Bonventre PF, Gregoriandis G. Killing of intraphagocytic staphylococcus aureus by dihydrostreptomycin entrapped within liposomes[J]. Antimicrobial?Agents and Chemotherapy, 1978, 13(6): 1049-1051.
[38] He Y, Jin Y, Wang X, et al. An antimicrobial peptide-loaded gelatin/chitosan nanofibrous membrane fabricated by sequential layer-by-layer electrospinning and electrospraying techniques[J]. Nanomaterials (Basel, Switzerland), 2018, 8(5):?327.
[39] Garcia-Orue I, Gainza G, Girbau C, et al. LL37 loaded nanostructured lipid carriers (NLC): a new strategy for the topical treatment of chronic wounds[J]. European Journal of Pharmaceutics and Biopharmaceutics, 2016, 108: 310-316.
[40] Lewies A, Wentzel JF, Jordaan A, et al. Interactions of the antimicrobial peptide nisin Z with conventional antibiotics and the use of nanostructured lipid carriers to enhance antimicrobial activity[J].?International Journal of Pharmaceutics, 2017, 526(1-2): 244-253.
[41] Uskokovi? V, Desai TA. Phase composition control of calcium phosphate nanoparticles for tunable drug delivery kinetics and treatment of osteomyelitis. I. Preparation and drug release[J]. Journal of Biomedical Materials Research Part A, 2013, 101A(5): 1427-1436.
[42] Cong YY, Quan CY, Liu MQ, et al. Alendronate-decorated biodegradable polymeric micelles for potential bone-targeted delivery of vancomycin[J]. Journal of Biomaterials Science, Polymer Edition, 2015, 26(11): 629-643.
?
|