设为首页 |  加入收藏
首页首页 期刊简介 消息通知 编委会 电子期刊 投稿须知 广告合作 联系我们
血液黏性对脉搏波传播特性影响的定量分析

Quantitative analysis of the influence of blood viscosity on pulse wave propagation characteristics

作者: 卢意成  李本森  缪馥星  龚文波 
单位:宁波大学冲击与安全工程教育部重点实验室(宁波 315211) <p>宁波市中医医院王晖工作室(宁波 315000)</p> <p>通信作者:缪馥星,教授。Email: miaofuxing@nbu.edu.cn.</p> <p>&nbsp; &nbsp;</p> <p>&nbsp;</p> <p>&nbsp;</p>
关键词: 脉搏波;脉搏波传播速度;血液黏性;流固耦合分析模型;数值模拟  
分类号:R318.01
出版年·卷·期(页码):2022·41·3(235-241)
摘要:

目的 通过定量分析血液黏性对脉搏波传播特性的影响,以期为血液黏性的无创检测研究提供一种新的思路。方法 假设血管为弹性薄壁圆管、血液为均质牛顿流体,应用多物理场仿真软件COMSOL Multiphysics,建立血液-血管系统的有限元模型。采用双向流固耦合方法,分别选取血液动力黏性系数0、0.002、0.004、和0.006 Pa?s,计算得到压力脉搏波与轴向速度脉搏波曲线,从脉搏波峰值以及波速方面定量分析人体肱动脉中血液黏性对脉搏波传播特性的影响。结果 血液黏性对脉搏波波速的影响比较微弱,不同动力黏性系数下的波速差距仅在1%左右。血液黏性对能量的耗散作用会使脉搏波的波峰值减小,初步分析可知,当血液动力黏性系数在0 ~ 0.006 Pa?s时,血液黏性越大脉搏波峰值衰减幅度越大;且黏性系数每增大0.002 Pa?s,压力脉搏波峰值衰减幅度增加约1.76%,轴向速度脉搏波峰值衰减幅度增加约1.20%,血管壁的变形程度减小约2.98%。结论 研究结果可以为通过脉搏波进行血液黏性的无创检测研究提供参考依据。

Objective To quantitatively analyze the effect of blood viscosity on pulse wave propagation ,and to provide a new idea for non-invasive detection of blood viscosity. Methods The finite element model of the blood-vessel system was created using COMSOL Multiphysics, assuming that the blood vessels were elastic thin-walled circular tubes and the blood was a homogeneous Newtonian fluid. The blood dynamic viscosity coefficients of 0 Pa?s, 0.002 Pa?s, 0.004 Pa?s, and 0.006 Pa?s were chosen to calculate the pressure pulse wave and axial velocity pulse wave curves using the bidirectional fluid-solid coupling method. The peak value and wave velocity were used to quantify the effect of blood viscosity on the pulse wave propagation characteristics in the human humeral artery. Results Blood viscosity had little effect on pulse wave velocity, and the difference of wave velocity under different dynamic viscosity coefficients was only about 1%. Blood viscosity's energy dissipation effect reduces the peak value of the pulse wave. According to preliminary analysis, the greater the blood viscosity, the greater the attenuation of the pulse wave peak value when the hemodynamic viscosity coefficient was in the range of 0- 0.006 Pa?s. If the viscosity coefficient increases by 0.002 Pa?s, then the peak attenuation amplitude of the pressure pulse wave increases by about 1.76%, the peak attenuation amplitude of the axial velocity pulse wave increases by about 1.20%, and the deformation degree of vascular wall was reduced by about 2.98% . Conclusions The results can provide a reference for the noninvasive detection of blood viscosity by pulse wave

 

参考文献:

[1]????? 乔爱科, 伍时桂. 动脉中的脉搏波理论[J]. 生物医学工程学杂志, 2000, 17(1): 95-100.

Qiao AK, Wu SG. Pulse wave theory in arteries[J]. Journal of Biomedical Engineering, 2000, 17(1): 95-100.

[2]????? 张永会, 高长青,王嵘. 脉搏波分析方法及其应用[J]. 北京生物医学工程, 2019, 38(3): 319-326.

Zhang YH, GAO CQ, Wang R. Pulse wave analysis method and its application [J]. Beijing Biomedical Engineering, 2019, 38(3): 319-326.

[3]????? Zhong Q, Hu MJ, Cui YJ, et al. Carotid–Femoral Pulse Wave Velocity in the Prediction of Cardiovascular Events and Mortality: An Updated Systematic Review and Meta-Analysis[J]. Angiology, 2018, 69(7): 617-629.

[4]????? Kim JH, Kim MY, Lee JU, et al. Waveform Analysis of the Brachial-ankle Pulse Wave Velocity in Hemiplegic Stroke Patients and Healthy Volunteers: A Pilot Study[J]. Journal of Physical Therapy Science, 2014, 26(4): 501-504.

[5]????? Gajdova J, Karasek D, Goldmannova D, et al. Pulse wave analysis and diabetes mellitus: A systematic review[J]. Biomedical Papers of the Medical Faculty of the University Palacky Olomouc Czechoslovakia, 2017, 161(3): 223-233.

[6]????? Wang P, Mao YM, Zhao CN, et al. Increased Pulse Wave Velocity in Systemic Lupus Erythematosus: A Meta-Analysis[J]. Angiology, 2018, 69(3): 228-235.

[7]????? Yoshida T, Sugita N, Abe M, et al. A study on blood viscosity estimation using pulse wave signal[J]. Transactions of Japanese Society for Medical and Biological Engineering, 2014, 52: 389-391.

[8]????? Kim JY, Yoon J, Cho M, et al. Blood characteristics effect on pulse wave velocity[J]. Clinical Hemorheology & Microcirculation, 2013, 55(1): 193-203.

[9]????? Alastruey J, Passerini T, Formaggia L, et al. Physical determining factors of the arterial pulse waveform: theoretical analysis and calculation using the 1-D formulation[J]. Journal of Engineering Mathematics, 2012, 77(1): 19-37.

[10]?? 李滚, 庞小峰. 血流脉搏波的特征与生理因素的相关性研究[J]. 生命科学仪器, 2007 ,5(10): 27-29.

Li G, Pang XF. Study on the correlation between the characteristics of blood flow pulse wave and physiological factors[J]. Life science instrument, 2007 ,5(10): 27-29.

[11]?? 姚大康, 严育兵, 柳兆荣. 血液粘弹性对动脉中脉搏波传播的影响[J]. 应用数学和力学, 2000, (09): 954-960.

Yao DK, Yan YB, Liu ZR. Influence of blood viscoelasticity on pulse wave propagation in artery [J]. Applied Mathematics and Mechanics, 2000, (09): 954-960.

[12]?? 潘一山, 贾晓波, 崔长奎, et al. 动脉中脉搏波传播分析[J]. 应用数学和力学, 2006, 27(2): 230-236.

Pan YS, Jia XB, Cui CK, et al. Analysis of pulse wave propagation in artery [J]. Applied Mathematics and Mechanics, 2006, 27(2): 230-236.

[13]?? Grillo A, Salvi P, Furlanis G, et al. Mean arterial pressure estimated by brachial pulse wave analysis and comparison with currently used algorithms[J]. Journal of Hypertension, 2020, 38(11):2161-2168.

[14]?? Munakata M. Brachial–Ankle Pulse Wave Velocity: A Most Predictable Arterial Measure for Cerebral Small Vessel Disease[J]. Journal of atherosclerosis and thrombosis, 2020, 27(9): 919-921.

[15]?? Westerhof N, Bosman F, De Vries C J, et al. Analog studies of the human systemic arterial tree[J].???? Journal of Biomechanics, 1969, 2(2): 121-143.

[16]?? Stergiopulos N, Young DF, Rogge TR. Computer simulation of arterial flow with applications to arterial and aortic stenoses[J]. Journal of Biomechanics, 1992, 25(12): 1477-1488.

[17]?? Di Martino ES, Guadagni G, Fumero A, et al. Fluid-structure interaction within realistic three-dimensional models of the aneurysmatic aorta as a guidance to assess the risk of rupture of the aneurysm[J]. Medical Engineering & Physics, 2001, 23(9): 647-655.

[18]?? 刘莹, 张伟中, 殷艳飞, et al. 双向流固耦合作用下狭窄左冠状动脉内两相血流分析[J]. 应用数学和力学, 2016, 37(5): 501-509.

Liu Y, Zhang WZ, Yin YF, et al. Biphasic flow analysis of stenosis in the left coronary artery under biphasic fluid-solid coupling [J]. Applied Mathematics and Mechanics, 2016, 37(5): 501-509.

[19]?? 缪馥星, 王晖, 王礼立, et al. 血液-血管耦合特性与脉搏波传播特性的关系[J]. 爆炸与冲击, 2020, 40 (4): 041101.

Miao FX, Wang H, Wang LL, et al. Relationship between the blood-vessel coupling characteristics and the propagation of pulse waves[J]. Explosion and Shock Waves, 2020, 40 (4): 041101.

?

服务与反馈:
文章下载】【加入收藏
提示:您还未登录,请登录!点此登录
 
友情链接  
地址:北京安定门外安贞医院内北京生物医学工程编辑部
电话:010-64456508  传真:010-64456661
电子邮箱:llbl910219@126.com