设为首页 |  加入收藏
首页首页 期刊简介 消息通知 编委会 电子期刊 投稿须知 广告合作 联系我们
天玑Ⅱ机器人辅助胸腰椎椎弓根螺钉内固定术的临床应用

Clinical application of 2nd generation TiRobot-assisted thoracolumbar pedicle screw fixation

作者: 阎凯  张琦  刘波  何达  刘亚军  田伟 
单位:北京积水潭医院脊柱外科,骨科机器人技术北京市重点实验室(北京 100035) <p>通信作者:田伟。E-mail:tianwei_spine@sina.com</p> <p>&nbsp;</p>
关键词: 手术机器人;胸腰椎;椎弓根螺钉;内固定  
分类号:R318.01
出版年·卷·期(页码):2022·41·3(297-301)
摘要:

目的 分析天玑Ⅱ机器人辅助胸腰椎椎弓根螺钉内固定术的临床效果,为天玑Ⅱ机器人在脊柱外科手术的临床应用提供依据。方法 天玑Ⅱ骨科手术机器人优化了主控触屏、机械臂末端和机械臂示踪器。本研究分析2020年12月至2021年5月期间在北京积水潭医院实施天玑Ⅱ机器人辅助胸腰椎椎弓根螺钉内固定术20例患者的病例资料,使用图像融合法测量导针偏差,使用术后影像测量螺钉准确性,同时记录手术时间、术中出血量、术后平均住院时间和并发症情况,评估天玑Ⅱ机器人系统的临床应用效果。结果 20例机器人辅助手术均顺利完成,共置入了92枚椎弓根螺钉。导针的入点偏差为1.44 (0.93, 1.93) mm,止点偏差为1.47 (1.02, 2.22) mm,综合偏差为1.55 (0.96, 1.99) mm。轴位角度偏差为1.90 (1.40, 2.20)°,矢状位角度偏差为1.00 (0.60, 1.20)°。螺钉位置优秀率为90.2%,螺钉位置优良率为100%。手术时间为(206±60)min,术中出血量为200 (113, 200) mL,术后住院时间为5 (4, 6) d,未出现围手术期并发症。结论 天玑Ⅱ机器人系统较前一代手术机器人进行了多项升级,有助于更加准确、高效地完成胸腰椎椎弓根螺钉内固定术。

Objective  To investigate the clinical outcome of 2nd generation TiRobot-assisted thoracolumbar pedicle screw fixation.,and to provide evidence for the clinical application of 2nd generation TiRobot in spine surgery. Methods The 2nd generation TiRobot optimizes the main control touch screen, the remote end and the tracker of the robotic arm. A total of 20 patients undergone 2nd generation TiRobot-assisted thoracolumbar pedicle screw fixation at Beijing Jishuitan Hospital from December 2020 to May 2021 were analyzed. By measuring the guide-wire deviation (based on image fusion), screw accuracy (based on postoperative image), and perioperative data (operation time, intraoperative blood loss, postoperative hospital stay and complications), the clinical application of the 2nd generation TiRobot system was evaluated. Results All 20 robot-assisted surgeries were completed successfully with a total of 92 pedicle screws inserted. The entry point deviation of the guide-wire was 1.44 (0.93, 1.93) mm, the end point deviation was 1.47 (1.02, 2.22) mm, and the mean deviation for each screw was 1.55 (0.96, 1.99) mm. The axial angular deviation was 1.90 (1.40, 2.20)°, and the sagittal angular deviation was 1.00 (0.60, 1.20)°. The perfect rate of screw position was 90.2%, and the clinically acceptable rate was 100%. The operation time was 206±60 minutes, the intraoperative blood loss was 200 (113, 200) mL, and the postoperative hospital stay was 5 (4, 6) days. There were no perioperative complications. Conclusions The 2nd generation TiRobot system, undergone numerous upgrades compared with its previous generation, helps to complete the thoracolumbar pedicle screw internal fixation more accurately and efficiently.

参考文献:

[1] Vaccaro AR, Garfin SR. Pedicle-screw fixation in the lumbar spine[J]. Journal of the American Academy of Orthopaedic Surgeons, 1995, 3(5): 263-274.

[2] Gelalis ID, Paschos NK, Pakos EE, et al. Accuracy of pedicle screw placement: a systematic review of prospective in vivo studies comparing free hand, fluoroscopy guidance and navigation techniques[J]. European Spine Journal, 2012, 21(2): 247-255.

[3] Shin BJ, James AR, Njoku IU, et al. Pedicle screw navigation: a systematic review and meta-analysis of perforation risk for computer-navigated versus freehand insertion[J]. Journal of Neurosurgery: Spine, 2012, 17(2): 113-122.

[4] Coe JD, Arlet V, Donaldson W, et al. Complications in spinal fusion for adolescent idiopathic scoliosis in the new millennium. A report of the scoliosis research society morbidity and mortality committee[J]. Spine, 2006, 31(3): 345-349.

[5] Jutte PC, Castelein RM. Complications of pedicle screws in lumbar and lumbosacral fusions in 105 consecutive primary operations[J]. European Spine Journal, 2002, 11(6): 594-598.

[6] 田伟. 医用机器人的发展现状[J]. 中华医学杂志, 2021, 101(5): 374-378.

[7] Tian W. Robot-assisted posterior C1-2 transarticular screw fixation for atlantoaxial instability: a case report[J]. Spine, 2016, 41 (Suppl 19): B2-B5.

[8] Tian W, Wang H, Liu Y J. Robot-assisted anterior odontoid screw fixation: a case report[J]. Orthopaedic Surgery, 2016, 8(3): 400-404.

[9] Han X, Tian W, Liu Y, et al. Safety and accuracy of robot-assisted versus fluoroscopy-assisted pedicle screw insertion in thoracolumbar spinal surgery: a prospective randomized controlled trial[J]. Journal of Neurosurgery: Spine, 2019, 30(5): 615–622.

[10] Zhang Q, Han XG, Xu YF, et al. Robot-assisted versus fluoroscopy-guided pedicle screw placement in transforaminal lumbar interbody fusion for lumbar degenerative disease[J]. World Neurosurgery, 2019, 125: e429-e434.

[11] Zhang Q, Xu Y F, Tian W, et al. Comparison of superior-level facet joint violations between robot-assisted percutaneous pedicle screw placement and conventional open fluoroscopic-guided pedicle screw placement[J]. Orthopaedic Surgery, 2019, 11(5): 850-856.

[12] Fan M, Liu Y, He D, et al. Improved accuracy of cervical spinal surgery with robot-assisted screw insertion: a prospective, randomized, controlled study[J]. Spine, 2020, 45(5): 285-291.

[13] Tian W, Fan M, Zeng C, et al. Telerobotic spinal surgery based on 5G network: The first 12 cases[J]. Neurospine, 2020, 17(1): 114-120.

[14] Yongqi L, Dehua Z, Hongzi W, et al. Minimally invasive versus conventional fixation of tracer in robot-assisted pedicle screw insertion surgery: a randomized control trial[J]. BMC Musculoskeletal Disorders, 2020, 21(1): 208.

[15] Tian W, Liu YJ, Liu B, et al. Guideline for thoracolumbar pedicle screw placement assisted by orthopaedic surgical robot[J]. Orthopaedic Surgery, 2019, 11(2): 153-159.

[16] Gertzbein S D, Robbins S E. Accuracy of pedicular screw placement in vivo[J]. Spine, 1990, 15(1): 11-4.

[17] Hyun SJ, Kim KJ, Jahng TA, et al. Minimally invasive robotic versus open fluoroscopic-guided spinal instrumented fusions: a randomized controlled trial[J]. Spine, 2017, 42(6): 353-358.

[18] Lonjon N, Chan-Seng E, Costalat V, et al. Robot-assisted spine surgery: feasibility study through a prospective case-matched analysis[J]. European Spine Journal, 2016, 25(3): 947-955.

[19] Lee N J, Zuckerman S L, Buchanan I A, et al. Is there a difference in screw accuracy, robot time per screw, robot abandonment, and radiation exposure between the Mazor X and the renaissance? A propensity-matched analysis of 1179 robot-assisted screws[J]. Global Spine Journal, 2021: 21925682211029867.

[20] Le X, Tian W, Shi Z, et al. Robot-assisted versus fluoroscopy-assisted cortical bone trajectory screw instrumentation in lumbar spinal surgery: a matched-cohort comparison[J]. World Neurosurgery, 2018, 120: e745-e751.

[21] Feng S, Tian W, Sun Y, et al. Effect of robot-assisted surgery on lumbar pedicle screw internal fixation in patients with osteoporosis[J]. World Neurosurgery, 2019, 125: e1057-e1062.

[22] Feng S, Tian W, Wei Y. Clinical effects of oblique lateral interbody fusion by conventional open versus percutaneous robot-assisted minimally invasive pedicle screw placement in elderly patients[J]. Orthopaedic Surgery, 2020, 12(1): 86-93.

?

服务与反馈:
文章下载】【加入收藏
提示:您还未登录,请登录!点此登录
 
友情链接  
地址:北京安定门外安贞医院内北京生物医学工程编辑部
电话:010-64456508  传真:010-64456661
电子邮箱:llbl910219@126.com