[1] Vidal J J. Real-time detection of brain events in EEG[J]. Proceedings of the IEEE, 1977, 65(5): 633-641.
[2] Lazeyras F O, Blanke O, Perrig S, et al. EEG-triggered functional MRI in patients with pharmacoresistant epilepsy[J]. Journal of Magnetic Resonance Imaging, 2015, 12(1): 177-185.
[3] 黄帅, 杜云梅, 梁会营, 等. 基于EEG的癫痫发作预测当前研究与进展[J]. 中国数字医学, 2019, 14(3):73-76.
Huang S, Du YH, Liang HY, et al. Current research and development of epileptic seizure prediction based on EEG [J]. 中国数字医学, 2019, 14(3):73-76.
[4] 吴迪, 王红新, 郝小生, 等. 剥夺睡眠EEG与脑电Holter对伴中央-颞区棘波的儿童良性癫痫诊断应用比较[J]. 吉林医学, 2012, 33(13):2744-2745.
Wu D, Wang HX, Hao XS, et al. Comparison of sleep deprivation EEG and EEG Holter in the diagnosis of benign epilepsy in children with center-temporal spines[J]. Jilin medical, 2012, 33(13):2744-2745.
[5] Mishuhina V, Jiang X. Feature Weighting and Regularization of Common Spatial Patterns in EEG-Based Motor Imagery BCI[J]. IEEE Signal Processing Letters, 2018, 25(6):783-787.
[6] 许学添, 蔡跃新. 基于图卷积网络的运动想象识别[J/OL]. 计算机工程与应用, http://kns.cnki.net/kcms/detail/11.2127. TP.20210119.1330.014.html, 2021-3-5.
Xu XT, Cai YX. Motion Imagination Recognition Based on Graph Convolutional Network [J/OL]. Computer Engineering and? Applications, http://kns.cnki.net/kcms/detail/11.2127.TP.20210119.1330.014.html, 2021-3-5.
[7] Holz E M, Botrel L, Kaufmann T, et al. Long-Term Independent Brain-Computer Interface Home Use Improves Quality of Life of a Patient in the Locked-In State: A Case Study[J]. Arch Phys Med Rehabil, 2015, 96(3): S16-S26.
[8] Boonyakitanont P, Lek-Uthai A, Chomtho K, et al. A review of feature extraction and performance evaluation in epileptic seizure detection using EEG[J]. Biomedical Signal Processing and Control, 2020, 57(4): 1746-1762.
[9] 张锦, 刘熔, 田森, 等. 面向癫痫脑电的简化深度学习模型[J]. 国防科技大学学报, 2020, 42(6): 106-111.
Zhang J, Liu R, Tian S, et al. A simplified deep learning model for epileptic EEG [J]. Journal of National University of Defense Technology, 2020, 42(6): 106-111.
[10] Gaur P, Pachori R B, Wang H, et al. A multi-class EEG-based BCI classification using multivariate empirical mode decomposition based filtering and Riemannian geometry[J]. Expert Systems with Applications, 2018, 95(APR.): 201-211.
[11] 付荣荣, 田永胜, 鲍甜恬. 基于稀疏共空间模式和Fisher判别的单次运动想象脑电信号识别方法[J]. 生物医学工程学杂志, 2019, 36(6): 911-915,923.
Fu RR, Tian YS, Bao TT. A Single Motor Imagination EEG Signal Recognition Method Based on Sparse Common Space Pattern and Fisher Discriminant[J]. Journal of Biomedical Engineering, 2019, 36(6): 911-915,923.
[12] Pan J, Xie Q, Huang H, et al. Emotion-Related Consciousness Detection in Patients With Disorders of Consciousness Through an EEG-Based BCI System[J]. Front Hum Neurosci, 2018, 12(6):198-209.
[13] Talukdar U, Hazarika S M, Gan J Q. Adaptive feature extraction in EEG-based motor imagery BCI: tracking mental fatigue[J]. Journal of neural engineering, 2020, 17(1): 016020.1-016020.16.
[14] Sakurada T, Hirai M, Watanabe E. Individual optimal attentional strategy during implicit motor learning boosts frontoparietal neural processing efficiency: A functional near-infrared spectroscopy study[J]. Brain Behav, 2019, 9(1): e01183.
[15] Li C, Su M, Xu J, et al. A Between-Subject fNIRS-BCI Study on Detecting Self-Regulated Intention During Walking[J]. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2020, 28(2): 531-540.
[16] 李玉, 熊馨, 李昭阳,等. 基于功能性近红外光谱识别右脚三种想象动作研究[J]. 生物医学工程学杂志, 2020, 37(2):262-270.
Li Y, Xiong X, Li ZY, et al. Study on Recognition of Three Imaginary Movements of Right Foot Based on Functional Near Infrared Spectroscopy[J]. Journal of Biomedical Engineering, 2020, 37(2):262-270.
[17] Arivudaiyanambi J, Mohan S, Chhabra H, et al. Investigation of deep convolutional neural network for classification of motor imagery fNIRS signals for BCI applications[J]. Biomedical Signal Processing and Control, 2020, 62(4):102-133.
[18] Chaudhary U, Xia B, Silvoni S, et al. Correction: Brain-Computer Interface-Based Communication in the Completely Locked-In State[J]. Plos Biology, 2018, 16(12): e3000089.
[19] Abdalmalak A, Milej D, Norton L, et al. Single-session communication with a locked-in patient by functional near-infrared spectroscopy[J]. Neurophotonics, 2017, 4(4):040501.
[20] 阮盛捷, 谢宏. 基于功能近红外信号的脑机接口(BCI)在肌萎缩性侧索硬化症(ALS)患者交流中的研究[J]. 现代计算机(专业版), 2018, 617(17): 5-9.
Ruan SJ, Xie H. Brain computer interface (BCI) based on functional near-infrared signals in the communication of patients with amyotrophic lateral sclerosis (ALS)[J]. Modern Computer (Professional), 2018, 617(17): 5-9.
[21] Borgheai S B, Mclinden J, Zisk A H, et al. Enhancing Communication for People in Late-Stage ALS Using an fNIRS-Based BCI System[J]. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2020, 28(5): 1198-1207.
[22] Pinti P, Tachtsidis I, Hamilton A, et al. The present and future use of functional near-infrared spectroscopy (fNIRS) for cognitive neuroscience[J]. Ann N Y Acad Sci, 2020, 1464(1): 5-29.
[23] J?bsis F F. Noninvasive, infrared monitoring of cerebral and myocardial oxygen sufficiency and circulatory parameters [J]. Science, 1977, 198(4323): 1264-1267.
[24] Li C, Zhang M, Ding K, et al. Effect of English learning experience on young children's prefrontal cortex functioning for attentional control: An fNIRS study.[C]// 2019 41st Annual International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC). IEEE, 2019, 2019:4832-4835.
[25] 郑玉甫, 许敏鹏, 明东. 脑-机接口操控效果差异及其预测研究综述[J]. 中国生物医学工程学报, 2018, 37(6): 749-755.
Zheng YF, Xu MP, Ming D. A review of research on differences and prediction of brain-computer interface manipulation effects[J]. Chinese Journal of Biomedical Engineering, 2018, 37(6): 749-755.
[26] Verma P , Heilinger A , Reitner P , et al. Performance Investigation of Brain-Computer Interfaces that Combine EEG and fNIRS for Motor Imagery Tasks[C]// 2019 IEEE International Conference on Systems, Man and Cybernetics (SMC). IEEE, 2019, 259-263.
[27] Sargent A , Heiman-Patterson T , Feldman S , et al. Mental Fatigue Assessment in Prolonged BCI Use Through EEG and fNIRS[J]. Neuroergonomics, 2018, 5(3):315-316.
[28] Nguyen T, Ahn S, Jang H, et al. Utilization of a combined EEG/NIRS system to predict driver drowsiness[J]. Entific Reports, 2017, 7(1):43933.
[29] 熊馨, 伏云发, 张夏冰, 等. 一种多模态脑电和近红外光谱联合采集头盔设计及实验研究[J]. 生物医学工程学杂志, 2018, 35(2): 290-296.
Xiong X, Fu YF, Zhang XB, et al. Design and Experimental Study of a Helmet Collected by Multi-modal EEG and Near Infrared Spectra[J]. Journal of Biomedical Engineering, 2018, 35(2): 290-296.
[30] Chiarelli A M, Croce P, Merla A, et al. Deep Learning for hybrid EEG-fNIRS Brain-Computer Interface: application to Motor Imagery Classification[J]. Journal of Neural Engineering, 2018, 15(3): 036028.1-036028.12.
[31] Dehais F , Dupres A , Flumeri G D , et al. Monitoring Pilot's Cognitive Fatigue with Engagement Features in Simulated and Actual Flight Conditions Using an Hybrid fNIRS-EEG Passive BCI[C]// 2018 IEEE International Conference on Systems, Man, and Cybernetics (SMC). IEEE, 2018.
[32] Sereshkeh A R, Yousefi R, Wong A T, et al. Development of a ternary hybrid fNIRS-EEG brain–computer interface based on imagined speech[J]. Brain-Computer Interfaces, 2019, 6(2):1-13.
[33] Gentile E, Brunetti A, Ricci K, et al. Mutual interaction between motor cortex activation and pain in fibromyalgia: EEG-fNIRS study[J]. PLoS ONE, 2020, 15(1): e0228158.
[34] Morioka H, Kanemura A, Morimoto S, et al. Decoding spatial attention by using cortical currents estimated from electroencephalography with near-infrared spectroscopy prior information [J]. Neuroimage, 2014, 90:128-139.
[35] Sangtae A, Thien N, Hyojung J, et al. Exploring Neuro-Physiological Correlates of Drivers' Mental Fatigue Caused by Sleep Deprivation Using Simultaneous EEG, ECG, and fNIRS Data[J]. Frontiers in Human Neuroence, 2016, 10(848):219-233.
?
|