设为首页 |  加入收藏
首页首页 期刊简介 消息通知 编委会 电子期刊 投稿须知 广告合作 联系我们
可穿戴设备在心血管疾病监测中的应用

Application of wearable device in disease monitoring

作者: 周新圆 
单位:首都医科大学北京安贞医院(北京 100029) <p>通信作者:周新圆。E-mail:jade_0203@sina.com</p> <p>&nbsp;</p>
关键词: 可穿戴设备;心血管疾病;实时监测;智能分析;健康评估  
分类号:R318.6
出版年·卷·期(页码):2022·41·3(326-329)
摘要:

可穿戴设备具有快速信息获取、实时信息分析和智能呈现等优点,能够弥补医疗行业人工不足的问题,从而使其在现今医疗领域迅速发展。通过传感器获取重要生理信息,并利用集成芯片进一步实时分析能够更高效地评估患者的健康状况。根据可穿戴设备近年来的发展趋势,本文主要综述了3种常见的可穿戴设备在医疗,特别是心血管疾病监测中的研究现状,最后对其未来的可能发展进行了分析和展望。

 

Wearable devices have developed dramatically in medical field, recently. The characteristics, such as feasible collection, real-time analysis and intelligent presentation can meet the requirement of more labors in health care field. The necessary physiological data gathered by wearable sensors, were immediately analyzed by integrated chip that offer a highly efficient way to evaluate the real-time condition of patients. On the basis of developmental direction of wearable devices, we summarized current statuses of 3 common wearable devices in medical, especially in cardiovascular disease morning. Finally, we made a hypothesis of development of wearable devices in the future.  

参考文献:

[1]宋奇. Wear OS 3.0更新在即:高通骁龙多平台确认支持 [J]. 计算机与网络, 2021, 47(12): 33.

[2]刘思文, 谷朝霞, 吕世军, 等. "互联网+"医疗模式的意义与必要性分析 [J]. 中国市场, 2021(20): 187-188.

[3]Zhang C, Kremer MP, Seral-Ascaso A, et al. Microelectronics: stamping of flexible, coplanar micro-supercapacitors using mxene inks? [J]. Advanced Functional Materials, 2018, 28(9): 1870059.

[4]Jiang Q, Wu C, Wang Z, et al. MXene electrochemical microsupercapacitor integrated with triboelectric nanogenerator as a wearable self-charging power unit [J]. Nano Energy, 2018, 45: 266-272.

[5]Lee H, Choi TK, Lee YB, et al. A graphene-based electrochemical device with thermoresponsive microneedles for diabetes monitoring and therapy [J]. Nature Nanotechnology, 2016, 11(6): 566-572.

[6]Caldara M, Colleoni C, Guido E, et al. Optical monitoring of sweat pH by a textile fabric wearable sensor based on covalently bonded litmus-3-glycidoxypropyltrimethoxysilane coating [J]. Sensors and Actuators B: Chemical, 2016, 222: 213-220.

[7]Pang C, Koo JH, Nguyen A, et al. Highly skin-conformal microhairy sensor for pulse signal amplification [J]. Advanced Materials, 2015, 27(4): 634-640.

[8]王闯, 鲍容容,潘曹峰. 基于纳米发电机的触觉传感在柔性可穿戴电子设备中的研究与应用 [J]. 物理学报, 2021, 70(10): 19-33.

Wang C,Bao RR ,Pan CF. Research and application of flexible wearable electronics based on nanogenerator in touch sensor[J]. Acta?Physica Sinica, 2021,70(10):19-33.

[9]王佳松. 基于可穿戴系统的下肢信息智能感知技术研究 [D]. 杭州:杭州电子科技大学, 2021.

Wang JS. Research on wearable information system based on lower limb perception [D].Hangzhou:Hangzhou Dianzi University,2021.

[10]Choi J, Ghaffari R, Baker LB, et al. Skin-interfaced systems for sweat collection and analytics [J]. Science Advances, 2018, 4(2): eaar3921.

[11]Oh JH, Hong SY, Park H, et al. Fabrication of High-Sensitivity Skin-Attachable Temperature Sensors with Bioinspired Microstructured Adhesive [J]. ACS Applied Materials & Interfaces, 2018, 10(8): 7263-7270.

[12]Gowers SAN, Curto VF, Seneci CA, et al. 3D Printed Microfluidic Device with Integrated Biosensors for Online Analysis of Subcutaneous Human Microdialysate [J]. Analytical Chemistry, 2015, 87(15): 7763-7770.

[13]Mohan AMV, Windmiller JR, Mishra RK, et al. Continuous minimally-invasive alcohol monitoring using microneedle sensor arrays [J]. Biosensors and Bioelectronics, 2017, 91: 574-579.

[14]Güder F, Ainla A, Redston J, et al. Paper-Based Electrical Respiration Sensor [J]. Angewandte Chemie International Edition, 2016, 55(19): 5727-5732.

[15]Wang S, Wu Y, Gu Y, et al. Wearable sweatband sensor platform based on gold nanodendrite array as efficient solid contact of ion-selective electrode [J]. Analytical Chemistry, 2017, 89(19): 10224-10231.

[16]Amjadi M, Kyung K-U, Park I, et al. Stretchable, skin-mountable, and wearable strain sensors and their potential applications: a review [J]. Advanced Functional Materials, 2016, 26(11): 1678-1698.

[17]Trung TQ ,Lee NE. Flexible and stretchable physical sensor integrated platforms for wearable human-activity monitoringand personal healthcare [J]. Advanced Materials, 2016, 28(22): 4338-4372.

[18]Wang S, Chinnasamy T, Lifson MA, et al. Flexible substrate-based devices for point-of-care diagnostics [J]. Trends in Biotechnology, 2016, 34(11): 909-921.

[19]Liao X, Zhang Z, Liao Q, et al. Flexible and printable paper-based strain sensors for wearable and large-area green electronics [J]. Nanoscale, 2016, 8(26): 13025-13032.

[20]Pu Z, Zou C, Wang R, et al. A continuous glucose monitoring device by graphene modified electrochemical sensor in microfluidic system [J]. Biomicrofluidics, 2016, 10(1): 011910.

[21]Bandodkar AJ, Hung VW, Jia W, et al. Tattoo-based potentiometric ion-selective sensors for epidermal pH monitoring [J]. Analyst, 2013, 138(1): 123-128.

[22]Chen J, Wen H, Zhang G, et al. Multifunctional conductive hydrogel/thermochromic elastomer hybrid fibers with a core–shell segmental configuration for wearable strain and temperature sensors [J]. ACS Applied Materials & Interfaces, 2020, 12(6): 7565-7574.

[23]Dervisevic M, Alba M, Prieto-Simon B, et al. Skin in the diagnostics game: wearable biosensor nano- and microsystems for medical diagnostics [J]. Nano Today, 2020, 30: 100828.

[24]Zhao L, Wen Z, Jiang F, et al. Silk/polyols/GOD microneedle based electrochemical biosensor for continuous glucose monitoring [J]. RSC Advances, 2020, 10(11): 6163-6171.

[25]Nightingale AM, Leong CL, Burnish RA, et al. Monitoring biomolecule concentrations in tissue using a wearable droplet microfluidic-based sensor [J]. Nature Communications, 2019, 10(1): 2741.

[26]Feng S, Caire R, Cortazar B, et al. Immunochromatographic diagnostic test analysis using google glass [J]. ACS Nano, 2014, 8(3): 3069-3079.

[27]Balakrishnan V, Dinh T, Foisal ARM, et al. Paper-based electronics using graphite and silver nanoparticles for respiration monitoring [J]. IEEE Sensors Journal, 2019, 19(24): 11784-11790.

[28]Zhang H, Zhang J, Hu Z, et al. Waist-wearable wireless respiration sensor based on triboelectric effect [J]. Nano Energy, 2019, 59: 75-83.

[29]Garcia-Cordero E, Bellando F, Zhang J, et al. Three-Dimensional Integrated Ultra-Low-Volume Passive Microfluidics with Ion-Sensitive Field-Effect Transistors for Multiparameter Wearable Sweat Analyzers [J]. ACS Nano, 2018, 12(12): 12646-12656.

[30]Rose DP, Ratterman ME, Griffin DK, et al. Adhesive RFID sensor patch for monitoring of sweat electrolytes [J]. IEEE Transactions on Biomedical Engineering, 2015, 62(6): 1457-1465.

[31]Cazalé A, Sant W, Ginot F, et al. Physiological stress monitoring using sodium ion potentiometric microsensors for sweat analysis [J]. Sensors and Actuators B: Chemical, 2016, 225: 1-9.

[32]Matzeu G, Fay C, Vaillant A, et al. A Wearable device for monitoring sweat rates via image analysis [J]. IEEE Transactions on Biomedical Engineering, 2016, 63(8): 1672-1680.

[33]Schwartz G, Tee BC, Mei J, et al. Flexible polymer transistors with high pressure sensitivity for application in electronic skin and health monitoring [J]. Nature Communications, 2013, 4: 1859.

[34]Dias D and Paulo Silva Cunha J. Wearable health devices—vital sign monitoring, systems and technologies [J]. Sensors, 2018, 18(8): 2414.

[35]Haahr RG, Duun SB, Toft MH, et al. An electronic patch for wearable health monitoring by reflectance pulse oximetry [J]. IEEE Transactions on Biomedical Circuits and Systems, 2012, 6(1): 45-53.

[36]Chacon PJ, Pu L, da?Costa TH, et al. A wearable pulse oximeter with wireless communication and motion artifact tailoring for continuous use [J]. IEEE Transactions on Biomedical Engineering, 2019, 66(6): 1505-1513.

?

?

服务与反馈:
文章下载】【加入收藏
提示:您还未登录,请登录!点此登录
 
友情链接  
地址:北京安定门外安贞医院内北京生物医学工程编辑部
电话:010-64456508  传真:010-64456661
电子邮箱:llbl910219@126.com