设为首页 |  加入收藏
首页首页 期刊简介 消息通知 编委会 电子期刊 投稿须知 广告合作 联系我们
一种面向癌症个性化的代谢分析方法

A metabolic analysis method for cancer individualization

作者: 冯昌奇  郑浩然 
单位:中国科学技术大学计算机科学与技术学院(合肥 230027)<br />通信作者:郑浩然,副教授。E-mail: hrzheng@ustc.edu.cn
关键词: 癌症代谢;代谢网络模型;个性化;差异表达基因;靶点基因 
分类号:R318
出版年·卷·期(页码):2022·41·4(331-337)
摘要:

目的 不同类型的癌症之间,甚至是同一癌症类型的不同患者个体之间,在代谢重编程的精确表现上都具有异质性,因此导致相同的药物在不同的癌症患者体内会产生不同的结果,以致于很难找到一种通用的治疗方案。为了探究癌症的这种异质性,本文提出了一种分析癌症个性化代谢的新方法。方法 本文使用来自癌症基因组图谱(The Cancer Genome Atlas, TCGA)的转录组数据,采用基于差异表达基因的代谢网络重构方法,通过对比每名患者的癌细胞和邻近正常细胞的基因表达数据之间的差异,还原重构出癌细胞相对原发组织细胞特有的那部分代谢网络。通过模拟基因敲除等手段,寻找潜在的癌症个性化治疗靶点基因。结果 本文对来自TCGA的17种癌症类型的679对样本进行了分析,发现了它们在癌症特异性代谢网络上的巨大差异,并得到了大量的个性化治疗靶点。特别是其中63个靶点基因,它们只对特定的某个患者有效。结论 不同的患者细胞癌变后发生的代谢变化具有很大的差异,需要进行个性化治疗方案的研究。本文提出的分析方法为癌症的个性化分析提供了新的思路,找到的个性化靶点也可以进行进一步的临床研究。

Objective There is heterogeneity in the precise performance of metabolic reprogramming between different types of cancer, even between different patients of the same cancer type. Therefore, the same drug will produce different results in different cancer patients, so that it is difficult to find a general treatment plan. In order to explore this heterogeneity of cancer, this article proposes a new method to analyze the personalized metabolism of cancer. Methods This article used transcriptome data from The Cancer Genome Atlas (TCGA), and used a metabolic network reconstruction method based on differentially expressed genes. By comparing the difference of the gene expression data between cancer cells and neighboring normal cells in each patient, the metabolic network that is unique to the cancer cell relative to the original tissue cells can be restored and reconstructed. By simulating gene knockout and other means, we can find potential target genes for personalized cancer therapy. Results This article analyzed 679 samples from 17 cancer types from TCGA and found huge differences in cancer-specific metabolic networks, and obtained a large number of personalized treatment targets. In particular, 63 of these target genes are only effective for a specific patient. Conclusion The metabolic abnormalities that occur after different individuals' cells become cancerous are very different, and it is necessary to conduct research on individualized treatment plans. The analysis method proposed in this paper provides new ideas for the personalized analysis of cancer, and the personalized targets found can also be used for further clinical research.

参考文献:

[1] Gerlinger M, Rowan AJ, Horswell S, et al. Intratumor heterogeneity and branched evolution revealed by multiregion sequencing[J]. The New England Journal of Medicine, 2012,366(10): 883-892.
[2] Kim HS, Mendiratta S, Kim J, et al. Systematic identification of molecular subtype-selective vulnerabilities in non-small-cell lung cancer[J]. Cell, 2013,155(3): 552-566.
[3] Gerdes MJ, Sood A, Sevinsky C, et al. Emerging understanding of multiscale tumor heterogeneity[J]. Frontiers in Oncology, 2014,4: 366.
[4] Tabassum DP, Polyak K. Tumorigenesis: it takes a village[J]. Nature Reviews Cancer,2015,15:473-483.
[5] Dagogo-Jack I, Shaw AT. Tumour heterogeneity and resistance to cancer therapies[J]. Nature Reviews Clinical Oncology, 2018,15(2): 81-94.
[6] Hiller K, Metallo CM. Profiling metabolic networks to study cancer metabolism[J]. Current Opinion in Biotechnology, 2013, 24(1): 60-68.
[7] Deberardinis RJ, Thompson CB. Cellular metabolism and disease: what do metabolic outliers teach us ?[J]. Cell, 2012, 148(6):1132-1144.
[8] Chiang, A.C.; Massagué, J. Molecular basis of metastasis[J]. The New England Journal of Medicine, 2008, 359: 2814–2823.
[9] Benfeitas R, Bidkhori G, Mukhopadhyay B, et al. Characterization of heterogeneous redox responses in hepatocellular carcinoma patients using network analysis[J]. EBioMedicine, 2019, 40: 471-487.
[10] Bidkhori G, Benfeitas R, Elmas E, et al. Metabolic network-based identification and prioritization of anticancer targets based on expression data in hepatocellular carcinoma[J]. Frontiers in Physiology, 2018, 9: 916.
[11] Mardinoglu A, Nielsen J. Systems medicine and metabolic modelling[J]. Journal of Internal Medicine, 2012, 271(2):142-154.?
[12] Zhang C, Hua Q. Applications of genome-scale metabolic models in biotechnology and systems medicine[J]. Frontiers in Physiology, 2016, 6:413.
[13] Berndt N, Eckstein J, Heucke N, et al. Metabolic heterogeneity of human hepatocellular carcinoma: implications for personalized pharmacological treatment[J]. The FEBS Journal, 2021, 288(7): 2332-2346.
[14] Baloni P, Dinalankara W, Earls JC, et al. Identifying personalized metabolic signatures in breast cancer[J]. Metabolites, 2021, 11(1): 20.
[15] Smyth GK. Limma: linear models for microarray data[M]// Bioinformatics and computational biology solutions using R and bioconductor. Statistics for biology and health. New York: Springer, New York, NY, 2005: 397-420.
[16] Ritchie ME, Phipson B, Wu D, et al. Limma powers differential expression analyses for RNA-sequencing and microarray studies[J]. Nucleic Acids Research, 2015, 43(7): e47.
[17] Brunk E, Sahoo S, Zielinski DC, et al. Recon3D enables a three-dimensional view of gene variation in human metabolism[J]. Nature Biotechnology, 2018, 36(3): 272-281.
[18] Heirendt L, Arreckx S, Pfau T, et al. Creation and analysis of biochemical constraint-based models using the COBRA Toolbox v.3.0[J]. Nature Protocols, 2019, 14(3): 639-702.
[19] Vlassis N, Pacheco MP, Sauter T. Fast reconstruction of compact context-specific metabolic network models[J]. PLoS Computational Biology, 2014, 10(1): e1003424.
[20] Wang H, Marci?auskas S, Sánchez BJ, et al. RAVEN 2.0: a versatile toolbox for metabolic network reconstruction and a case study on Streptomyces coelicolor[J]. PLoS Computational Biology, 2018, 14(10): e1006541.
[21] Robinson JL, Kocaba? P, Wang H, et al. An atlas of human metabolism[J]. Science Signaling, 2020, 13(624): eaaz1482.
[22] Agren R, Mardinoglu A, Asplund A, et al. Identification of anticancer drugs for hepatocellular carcinoma through personalized genome‐scale metabolic modeling[J]. Molecular Systems Biology, 2014, 10(3): 721.
[23] Zhuang H, Zhou Z, Zhang Z, et al. B3GNT3 overexpression promotes tumor progression and inhibits infiltration of CD8+ T cells in pancreatic cancer[J]. Aging (Albany NY), 2020, 13(2): 2310-2329.?
[24] Zhang W, Hou T, Niu C, et al. B3GNT3 expression is a novel marker correlated with pelvic lymph node metastasis and poor clinical outcome in early-stage cervical cancer[J]. PLoS One, 2015,10(12): e0144360.
[25] Cho U, Yang SH, Yoo C. Estimation of the occurrence rates of IDH1 and IDH2 mutations in gliomas and the reconsideration of IDH-wildtype anaplastic astrocytomas: an institutional experience[J]. The Journal of International Medical Research, 2021, 49(6):3000605211019258.
[26] Liao R, Ren G, Liu H, et al. ME1 promotes basal-like breast cancer progression and associates with poor prognosis[J]. Scientific Reports, 2018, 8(1): 16743.
[27] Jiang Z, Cui H, Zeng S, et al. miR-885-5p inhibits invasion and metastasis in gastric cancer by targeting malic enzyme 1[J]. DNA and Cell Biology, 2021, 40(5): 694-705.
[28] Li J, Yue H, Yu H, et al. Patients with low nicotinamide N-methyltransferase expression benefit significantly from bevacizumab treatment in ovarian cancer[J]. BMC Cancer, 2021, 21(1): 67.
[29] Zhang L, Song M, Zhang F, et al. Accumulation of nicotinamide N-methyltransferase (NNMT) in cancer-associated fibroblasts: a potential prognostic and predictive biomarker for gastric carcinoma[J]. Journal of Histochemistry & Cytochemistry, 2021, 69(3): 165-176.
[30] Harmankaya ?, Akar S, U?ra? S, et al. Nicotinamide N-methyltransferase overexpression may be associated with poor prognosis in ovarian cancer[J]. Journal of Obstetrics and Gynaecology, 2021, 41(2): 248-253.
[31] Chandrika M, Chua PJ, Muniasamy U, et al. Prognostic significance of phosphoglycerate dehydrogenase in breast cancer[J]. Breast Cancer Research and Treatment, 2021, 186(3): 655-665.
[32] Song Z, Feng C, Lu Y, et al. PHGDH is an independent prognosis marker and contributes cell proliferation, migration and invasion in human pancreatic cancer[J]. Gene, 2018, 642:43-50.
[33] Yoshino H, Enokida H, Osako Y, et al. Characterization of PHGDH expression in bladder cancer: potential targeting therapy with gemcitabine/cisplatin and the contribution of promoter DNA hypomethylation[J]. Molecular Oncology, 2020, 14(9): 2190-2202.

服务与反馈:
文章下载】【加入收藏
提示:您还未登录,请登录!点此登录
 
友情链接  
地址:北京安定门外安贞医院内北京生物医学工程编辑部
电话:010-64456508  传真:010-64456661
电子邮箱:llbl910219@126.com