[1] Gerlinger M, Rowan AJ, Horswell S, et al. Intratumor heterogeneity and branched evolution revealed by multiregion sequencing[J]. The New England Journal of Medicine, 2012,366(10): 883-892. [2] Kim HS, Mendiratta S, Kim J, et al. Systematic identification of molecular subtype-selective vulnerabilities in non-small-cell lung cancer[J]. Cell, 2013,155(3): 552-566. [3] Gerdes MJ, Sood A, Sevinsky C, et al. Emerging understanding of multiscale tumor heterogeneity[J]. Frontiers in Oncology, 2014,4: 366. [4] Tabassum DP, Polyak K. Tumorigenesis: it takes a village[J]. Nature Reviews Cancer,2015,15:473-483. [5] Dagogo-Jack I, Shaw AT. Tumour heterogeneity and resistance to cancer therapies[J]. Nature Reviews Clinical Oncology, 2018,15(2): 81-94. [6] Hiller K, Metallo CM. Profiling metabolic networks to study cancer metabolism[J]. Current Opinion in Biotechnology, 2013, 24(1): 60-68. [7] Deberardinis RJ, Thompson CB. Cellular metabolism and disease: what do metabolic outliers teach us ?[J]. Cell, 2012, 148(6):1132-1144. [8] Chiang, A.C.; Massagué, J. Molecular basis of metastasis[J]. The New England Journal of Medicine, 2008, 359: 2814–2823. [9] Benfeitas R, Bidkhori G, Mukhopadhyay B, et al. Characterization of heterogeneous redox responses in hepatocellular carcinoma patients using network analysis[J]. EBioMedicine, 2019, 40: 471-487. [10] Bidkhori G, Benfeitas R, Elmas E, et al. Metabolic network-based identification and prioritization of anticancer targets based on expression data in hepatocellular carcinoma[J]. Frontiers in Physiology, 2018, 9: 916. [11] Mardinoglu A, Nielsen J. Systems medicine and metabolic modelling[J]. Journal of Internal Medicine, 2012, 271(2):142-154.? [12] Zhang C, Hua Q. Applications of genome-scale metabolic models in biotechnology and systems medicine[J]. Frontiers in Physiology, 2016, 6:413. [13] Berndt N, Eckstein J, Heucke N, et al. Metabolic heterogeneity of human hepatocellular carcinoma: implications for personalized pharmacological treatment[J]. The FEBS Journal, 2021, 288(7): 2332-2346. [14] Baloni P, Dinalankara W, Earls JC, et al. Identifying personalized metabolic signatures in breast cancer[J]. Metabolites, 2021, 11(1): 20. [15] Smyth GK. Limma: linear models for microarray data[M]// Bioinformatics and computational biology solutions using R and bioconductor. Statistics for biology and health. New York: Springer, New York, NY, 2005: 397-420. [16] Ritchie ME, Phipson B, Wu D, et al. Limma powers differential expression analyses for RNA-sequencing and microarray studies[J]. Nucleic Acids Research, 2015, 43(7): e47. [17] Brunk E, Sahoo S, Zielinski DC, et al. Recon3D enables a three-dimensional view of gene variation in human metabolism[J]. Nature Biotechnology, 2018, 36(3): 272-281. [18] Heirendt L, Arreckx S, Pfau T, et al. Creation and analysis of biochemical constraint-based models using the COBRA Toolbox v.3.0[J]. Nature Protocols, 2019, 14(3): 639-702. [19] Vlassis N, Pacheco MP, Sauter T. Fast reconstruction of compact context-specific metabolic network models[J]. PLoS Computational Biology, 2014, 10(1): e1003424. [20] Wang H, Marci?auskas S, Sánchez BJ, et al. RAVEN 2.0: a versatile toolbox for metabolic network reconstruction and a case study on Streptomyces coelicolor[J]. PLoS Computational Biology, 2018, 14(10): e1006541. [21] Robinson JL, Kocaba? P, Wang H, et al. An atlas of human metabolism[J]. Science Signaling, 2020, 13(624): eaaz1482. [22] Agren R, Mardinoglu A, Asplund A, et al. Identification of anticancer drugs for hepatocellular carcinoma through personalized genome‐scale metabolic modeling[J]. Molecular Systems Biology, 2014, 10(3): 721. [23] Zhuang H, Zhou Z, Zhang Z, et al. B3GNT3 overexpression promotes tumor progression and inhibits infiltration of CD8+ T cells in pancreatic cancer[J]. Aging (Albany NY), 2020, 13(2): 2310-2329.? [24] Zhang W, Hou T, Niu C, et al. B3GNT3 expression is a novel marker correlated with pelvic lymph node metastasis and poor clinical outcome in early-stage cervical cancer[J]. PLoS One, 2015,10(12): e0144360. [25] Cho U, Yang SH, Yoo C. Estimation of the occurrence rates of IDH1 and IDH2 mutations in gliomas and the reconsideration of IDH-wildtype anaplastic astrocytomas: an institutional experience[J]. The Journal of International Medical Research, 2021, 49(6):3000605211019258. [26] Liao R, Ren G, Liu H, et al. ME1 promotes basal-like breast cancer progression and associates with poor prognosis[J]. Scientific Reports, 2018, 8(1): 16743. [27] Jiang Z, Cui H, Zeng S, et al. miR-885-5p inhibits invasion and metastasis in gastric cancer by targeting malic enzyme 1[J]. DNA and Cell Biology, 2021, 40(5): 694-705. [28] Li J, Yue H, Yu H, et al. Patients with low nicotinamide N-methyltransferase expression benefit significantly from bevacizumab treatment in ovarian cancer[J]. BMC Cancer, 2021, 21(1): 67. [29] Zhang L, Song M, Zhang F, et al. Accumulation of nicotinamide N-methyltransferase (NNMT) in cancer-associated fibroblasts: a potential prognostic and predictive biomarker for gastric carcinoma[J]. Journal of Histochemistry & Cytochemistry, 2021, 69(3): 165-176. [30] Harmankaya ?, Akar S, U?ra? S, et al. Nicotinamide N-methyltransferase overexpression may be associated with poor prognosis in ovarian cancer[J]. Journal of Obstetrics and Gynaecology, 2021, 41(2): 248-253. [31] Chandrika M, Chua PJ, Muniasamy U, et al. Prognostic significance of phosphoglycerate dehydrogenase in breast cancer[J]. Breast Cancer Research and Treatment, 2021, 186(3): 655-665. [32] Song Z, Feng C, Lu Y, et al. PHGDH is an independent prognosis marker and contributes cell proliferation, migration and invasion in human pancreatic cancer[J]. Gene, 2018, 642:43-50. [33] Yoshino H, Enokida H, Osako Y, et al. Characterization of PHGDH expression in bladder cancer: potential targeting therapy with gemcitabine/cisplatin and the contribution of promoter DNA hypomethylation[J]. Molecular Oncology, 2020, 14(9): 2190-2202.
|