设为首页 |  加入收藏
首页首页 期刊简介 消息通知 编委会 电子期刊 投稿须知 广告合作 联系我们
一种基于延时交错时钟采样的超声生物显微镜成像方法

A imaging method of ultrasound biomicroscopy based on delayed interlaced clock sampling mode

作者: 王效宁  巩丽文  王晓春  周盛 
单位:中国医学科学院北京协和医学院生物医学工程研究所(天津 300192),<br />天津迈达医学科技股份有限公司(天津 300384),<br />通信作者:周盛,副研究员,硕士生导师。E-mail:zhousheng@bme.pumc.edu.cn
关键词: 超声生物显微镜;采样率;延时交错时钟;可编程逻辑器件 
分类号:&nbsp;R318.04&nbsp;
出版年·卷·期(页码):2022·41·4(374-380)
摘要:

目的 超声生物显微镜通常采用频率为35 MHz及以上超声波,用于人体浅表组织精细成像,其系统的模数转换器的采样率通常需要高于200 MHz。因此,传统超声诊断设备中的数据采集硬件方案,难以实现超声生物显微镜的数字化成像。本文提出一种交错时钟采样方法,通过单路ADC采集电路,可实现4倍频数据采样率的高频超声实时成像系统,其性能指标达到临床诊断的需要。方法 基于可编程逻辑器件,通过构建相位相差90°的4组80 MHz采样时钟,分别对相邻的4条扫描线进行采样。设计分时采样控制模块和四通道数据缓存器,将回波数据逐一插点拼接,达到与采样频率320 MHz相当的图像效果。结果 通过钨丝测试线靶测试,轴向、侧向分辨力达到50 μm,并采用离体猪眼球进行体外成像,图像的信噪比和显示范围符合诊断要求。结论 该方法是设计高频超声诊断系统数据采集模块的一种可行性方案,可有效降低硬件需求,实现了超声生物显微镜实时数字化成像的目标,具备较好的临床应用前景。

Objective Ultrasound Biomicroscopy usually uses ultrasonic waves at a frequency of 35 MHz and above for fine imaging of human superficial tissues. The sampling rate of its system's analog-to-digital converter is usually higher than 200MHz. Therefore, it is difficult to realize the digital imaging by ultrasound biomicroscopy with the hardware scheme of data acquisition in traditional ultrasound diagnostic equipment. In this paper, a interlaced clock sampling method is proposed. Through a acquisition circuit with a single ADC, a high-frequency ultrasound real-time imaging system with 4 times of frequency data sampling rate can be realized, and its performance can meet the needs of clinical diagnosis. Methods Based on a FPGA, four sets of 80 MHz sampling clocks with a phase difference of 90° were constructed to sample four adjacent scan lines. A time-sharing sampling control module and a four-channel data cache were designed to splice echo data one by one to achieve an imaging effect equivalent to the sampling frequency of 320 MHz. Results The axial and lateral resolution reaches 50 μm by tungsten wire test. In vitro imaging was carried out using a porcine eyeball, and the signal-to-noise ratio and the detection depth of the image both met the diagnostic requirements. Conclusions This method is a feasible scheme for the design of data acquisition module of high-frequency ultrasound diagnosis system, which can effectively reduce the hardware requirements and achieve the goal of real-time digital imaging of ultrasound biomicroscopy, and has a good clinical application prospect. 

参考文献:

[1] Wang WS, Wang LX, Wang T, et al. Automatic localization of the scleral spur using deep ? learning and ultrasound biomicroscopy[J]. Translational Vision Science & Technology, 2021, 10(9): 28.
[2] Bhatt V, Bhatt D, Barot R, et al. Ultrasound biomicroscopy for zonular evaluation in eyes with ocular trauma [J]. Clinical Ophthalmology, 2021, 15: 3285-3291.
[3] Chen WS, He SP, Hu LX, et al. Ultrasound biomicroscopy for the assessment of postoperative complications after congenital cataract surgery[J]. Quantitative imaging in medicine and surgery, 2021, 11(4): 1483-1489.
[4] Kaliki S, Jajapuram SD, Maniar A, et al. Ocular surface squamous neoplasia with intraocular tumour extension: a study of 23 patients [J]. Eye, 2020, 34: 319-326.
[5] 王子, 王曦曦, 朱强, 等. 超声影像在皮肤病变诊断中的应用研究[J]. 中华医学超声杂志(电子版), 2019, 16(6):407-418.
Wang Z,Wang XX, Zhu Q, et al. Sonographic manifestations of skin diseases: a preliminary study[J]. Chinese Journal of Medical Ultrasound(Electronic Edition), 2019, 16(6): 407-418.
[6] Wang XC, Yang J, Ji JJ, et al. Research on Golay-coded excitation in real-time imaging of high frequency ultrasound biomicroscopy[J]. Scientifc Reports, 2021, 11: 1848.
[7] Lim HG, Kim HH, Yoon Changhan. Synthetic Aperture Imaging Using High-Frequency Convex Array for Ophthalmic Ultrasound Applications[J]. Sensors, 2021, 21(7): 2275.
[8] Urs R, Kettering JA, Tezel G, et al. Contrast-enhanced plane-wave ultrasound imaging of the rat eye[J]. Experimental Eye Research, 2020, 193: 107986.
[9] Qiu WB, Xia JJ, Shi YL, et al. A delayed-excitation data acquisition method for high-frequency ultrasound imaging [J]. IEEE Transactions on Biomedical Engineering, 2018, 65(1): 15-20.
[10] 王晓春, 杨军, 计建军,等. 一种甚高频医学超声回波信号高速数据采集系统的设计[J]. 医疗卫生装备, 2017, 38(11): 1-4,9.
Wang XC, Yang J, Ji JJ, et al. Design of high-speed data acquisition system for very high frequency medical ultasonic echo signals[J]. Chinese Medical Equipment Journal, 2017, 38(11): 1-4, 9.
[11] Jiang Z, Zhao L, Gao X, et al. Mismatch error correction for time interleaved analog-to-digital converter over a wide frequency range[J]. Review of Scientific Instruments, 2018, 89(8): 084709.
[12] Ramkumar A, Thittai AK. Strategic undersampling and recovery using compressed sensing for enhancing ultrasound image quality [J]. IEEE Transactions on Ultrasonics Ferroelectrics and Frequency Control, 2020, 67(3): 547-556.
[13] Mitrovic J, Ignjatovic Z, Pietra LL, et al. Compressed sensing for reduced hardware footprint in medical ultrasound [J]. Ultrasonics, 2020, 108: 106214.
[14] Yousufi M, Amir M, Javed U, et al. Application of compressive sensing to ultrasound images: a review [J]. Biomed Research International, 2019, 2019: 786165.
[15] 王晓春, 杨军, 计建军,等. 基于Golay互补序列的20 MHz眼科超声成像方法[J]. 北京生物医学工程, 2021, 40(2):167-173.
Wang XC, Yang J, Ji JJ, et al. A method of 20 MHz ophthalmic ultrasound imaging based on Golay complementary sequence[J]. Beijing Biomedical Engineering, 2021, 40(2):167-173.

服务与反馈:
文章下载】【加入收藏
提示:您还未登录,请登录!点此登录
 
友情链接  
地址:北京安定门外安贞医院内北京生物医学工程编辑部
电话:010-64456508  传真:010-64456661
电子邮箱:llbl910219@126.com