设为首页 |  加入收藏
首页首页 期刊简介 消息通知 编委会 电子期刊 投稿须知 广告合作 联系我们
组织工程人工胆管的研究进展

Research progress of tissue engineered artificial bile duct

作者: 袁琪  徐雯  周文策 
单位:兰州大学第一临床医学院 (兰州 730013),<br />河西学院附属张掖人民医院 ( 甘肃张掖 734099),<br />通信作者:周文策。E-mail: zhouwc129@163.com
关键词: 组织工程;人工胆管;胆管狭窄;研究进展;生物3D打印 
分类号:R318.08&nbsp;
出版年·卷·期(页码):2022·41·4(424-428)
摘要:

胆管损伤后胆管狭窄是胆管疾病术后常见的并发症,其主要通过手术治疗,大部分患者术后胆道梗阻症状在短期内可以得到良好的改善,然而长期预后不容乐观。组织工程是一门新型技术,随着组织工程材料的不断发展,其在可吸收性、生物相容性及促组织再生等方面的优势使得人工胆管在胆管损伤后胆管狭窄修复中的应用成为可能,近年来生物3D打印技术的出现不但提高了制作人工胆管的精度,而且满足了按需打印的个体化差异要求,进一步推动了组织工程人工胆管的发展,使其成为未来胆管狭窄治疗的又一重要方式。

Biliary stricture after bile duct injury is a common postoperative complication of bile duct disease, which is mainly treated by surgery. Most patients with postoperative biliary obstruction can get a good improvement in the short term, but the long-term prognosis is not optimistic. Tissue engineering is a new technology, with the continuous development of tissue engineering material, its absorbability, biocompatibility, and promoting tissue regeneration and other advantages of making artificial bile duct in the application of bile duct stricture repair after injury of bile duct, in recent years, the emergence of biological 3 d printing technology not only enhances the precision of making artificial bile duct. Moreover, it meets the requirement of individualized difference of on-demand printing, further promotes the development of tissue engineered artificial bile duct, and makes it become another important way for the treatment of bile duct stricture in the future.

参考文献:

[1] 黄志强. 经验值得注意——再论胆管损伤与损伤性胆管狭窄[J]. 中国实用外科杂志, 2011, 31(7): 551-553.
Huang ZQ. Re-discussion of bile duct injury and traumatic bile duct stenosis [J].Chinese Journal of Practical Surgery, 2011, 31(7): 551-553.
[2]黄志强. 必须重视腹腔镜胆囊切除术的安全性[J]. 中华外科杂志, 1995, 33(11):645-646.
[3] Andersson R, Eriksson K, Blind PJ, et al. Iatrogenic bile duct injury — a cost analysis[J]. HPB: the official journal of the International Hepato Pancreato Biliary Association, 2008, 10(6):416-419.
[4] Stilling NM, Fristrup C, Wettergren A, et al. Long-term outcome after early repair of iatrogenic bile duct injury. A national Danish multicentre study[J]. HPB: the official journal of the International Hepato Pancreato Biliary Association, 2015,17(5): 394-400.
[5]王敬, 黄晓强, 周宁新,等. 医源性胆管狭窄的手术治疗[J]. 中华消化外科杂志, 2008, 7(5):342-344.
Wang J, Huang XQ, Zhou NX, et al. Surgical treatment of iatrogenic bile duct strictures [J]. Chinese Journal of Digestive Surgery, 2008, 7(5): 342-344.
[6]中国科学院.中国学科发展战略?再生医学[M].北京:科学出版社,2018.
[7]Biglari M, Van den Bussche D, Vanlangenhove P, et al. Reconstruction of a Common Bile Duct Injury by Venous Bypass[J]. Acta Chirurgica Belgica, 2016, 113(4): 308-310.
[8] Crema E, Trentini EA, Teles CJO, et al. Laparoscopic reconstruction of the extrahepatic bile duct using a jejunal tube: an innovative, more physiological and anatomical technique for biliodigestive derivation[J]. Journal of Surgical Case Reports, 2014,2014(1): rjt106.
[9] Logmans A, Schoenmakers C, Haensel SM, et al. High tissue factor concentration in the omentum, a possible cause of its hemostatic properties[J]. European Journal of Clinical Investigation, 1996, 26(1):82-83.
[10] Uchibori T, Takanari K, Hashizume R, et al. Use of a pedicled omental flap to reduce inflammation and vascularize an abdominal wall patch[J]. Journal of Surgical Research, 2017, 212: 77-85.
[11] Normand C, Linde C, Bogale N, et al. Cardiac resynchronization therapy pacemaker or cardiac resynchronization therapy defibrillator: what determines the choice—findings from the ESC CRT Survey II[J].Europace, 2019, 21(6): 918-927.
[12] Struecke B, Hillebrandt KH, Raschzok N, et al. Implantation of a tissue-engineered neo-bile duct in domestic pigs[J]. European Surgical Research, 2015, 56(1-2): 61-75.
[13] Chakhunashvili K, Kiladze M, Chakhunashvili DG, et al. A three-dimensional scaffold from decellularized human umbilical artery for bile duct reconstruction[J]. Annali Italiani di Chirurgia, 2019, 90(2): 165-173.
[14] Cheng Y, Xiong XZ, Zhou RX, et al. Repair of a common bile duct defect with a decellularized ureteral graft[J]. World Journal of Gastroenterology, 2016, 22(48): 10575-10583.
[15] Negishi J, Funamoto S, Kimura T, et al. Porcine radial artery decellularization by high hydrostatic pressure[J]. Journal of Tissue Engineering and Regenerative Medicine, 2015, 9(11): E144-E151.
[16] Krasilnikova AA, Sergeevichev DS, Fomenko VV, et al. Globular chitosan treatment of bovine jugular veins: Evidence of anticalcification efficacy in the subcutaneous rat model[J]. Cardiovascular Pathology, 2017, 32:1-7.
[17]Sheridan WS, Ryan AJ, Duffy GP, et al. An experimental investigation of the effect of mechanical and biochemical stimuli on cell migration within a decellularized vascular construct[J]. Annals of Biomedical Engineering, 2014, 40(10): 2029-2038.
[18]Bai H, Dardik A, Xing Y. Decellularized carotid artery functions as an arteriovenous graft[J]. Journal of Surgical Research, 2019, 234: 33-39.
[19] Hussey GS, Molina CP, Cramer MC, et al. Lipidomics and RNA sequencing reveal a novel subpopulation of nanovesicle within extracellular matrix biomaterials[J]. Science Advances, 2020, 6(12): aay4361.
[20] Huleihel L, Hussey GS, Naranjo JD, et al. Matrix-bound nanovesicles within ECM bioscaffolds[J]. Science Advances, 2016, 2(6):e1600502.
[21] Liao J, Xu B, Zhang R, et al. Applications of decellularized materials in tissue engineering: advantages, drawbacks and current improvements, and future perspectives[J]. Journal of Materials Chemistry B, 2020, 8(44): 10023-10049.
[22] Dorati R, DeTrizio A, Modena T, et al. Biodegradable scaffolds for bone regeneration combined with drug-delivery systems in osteomyelitis therapy[J]. Pharmaceuticals, 2017, 10(4): 96.
[23] Ghassemi T, Shahroodi A, Ebrahimzadeh MH, et al. Current concepts in scaffolding for bone tissue engineering[J]. The Archives of Bone and Joint Surgery, 2018, 6(2): 90-99.
[24] Bahrami R, Zibaei R, Hashami Z, et al. Modification and improvement of biodegradable packaging films by cold plasma; a critical review[J]. Critical Reviews in Food Science and Nutrition, 2020, 62(7): 1936-1950.
[25] Kim MJ, Kim HB, Han JK , et al. Injuries of adjacent organs by the expanded polytetrafluoroethylene grafts in the venoplasty of middle hepatic veins in living-donor liver transplantation: computed tomographic findings and possible risk factors[J]. Journal of Computer Assisted Tomography, 2011, 35(5): 544-548.
[26] Miyazawa M, Torii T, Toshimitsu Y, et al. A tissue‐engineered artificial bile duct grown to resemble the native bile duct[J]. American Journal of Transplantation, 2015, 5(6):1541-1547.
[27] LiQ, Tao L, Chen B, et al. Extrahepatic bile duct regeneration in pigs using collagen scaffolds loaded with human collagen-binding bFGF[J]. Biomaterials, 2012, 33(17): 4298-4308.
[28]Zong C, Wang M, Yang F, et al. A novel therapy strategy for bile duct repair using tissue engineering technique: PCL/PLGA bilayered scaffold with hMSCs[J]. Journal of Tissue Engineering and Regenerative Medicine, 2017, 11(4): 966-976.
[29] Cai Z, Yang G. Research progress in electrospinning technique for biomedical materials[J]. Journal of Biomedical Engineering, 2010, 27(6): 1389-1392.
[30] Scotchford CA. Cell response to surface chemistry in biomaterials[M]//Cellular Response to Biomaterials A volume in Woodhead Publishing Series in Biomaterials. Boca Raton: CRC Woodhead, 2009: 462-478. ? ?
[31] Yan M, Lewis PL, Shah RN. Tailoring nanostructure and bioactivity of 3D printable hydrogels with self-assemble Peptides Amphiphile (PA) for promoting bile duct formation[J]. Biofabrication, 2018, 10(3): 035010.
[32] Xiang Y, Wang W, Gao Y, et al. Production and characterization of an integrated multi-layer 3D printed PLGA/GelMA scaffold aimed for bile duct restoration and detection[J]. Frontiers in Bioengineering and Biotechnology, 2020, 8: 971.
[33] Hamada T, Nakamura A, Soyama A, et al. Bile duct reconstruction using scaffold-free tubular constructs created by Bio-3D printer[J]. Regenerative Therapy, 2021, 16:81-89.
[34] Ihalainen P, M??tt?nen A, Sandler N. Printing technologies for biomolecule and cell-based ?applications[J]. ?International Journal of Pharmaceutics, 2015, 494: 585–592.
[35] Calvert P. Inkjet printing for materials and devices[J]. Chemistry of Materials, 2001, 13(10):3299-3305.
[36] Matai I, Kaur G, Seyedsalehi A, et al. Progress in 3D bioprinting technology for tissue/organ regenerative engineering[J]. Biomaterials, 2020, 226: 119536.
[37] Murphy SV, Atala A. 3D bioprinting of tissues and organs[J]. Nature Biotechnology, 2014, 32: 773–785.?
[38] Mandrycky C, Wang Z, Kim K, et al. 3D bioprinting for engineering complex tissues[J]. Biotechnology Advances, 2016, 34(4): 422-434.

服务与反馈:
文章下载】【加入收藏
提示:您还未登录,请登录!点此登录
 
友情链接  
地址:北京安定门外安贞医院内北京生物医学工程编辑部
电话:010-64456508  传真:010-64456661
电子邮箱:llbl910219@126.com