[1] Zhou H, Lee J. Nanoscale hydroxyapatite particles for bone tissue engineering[J]. Acta Biomaterialia, 2011, 7(7): 2769-2781. [2] Poinern GE, Brundavanam RK, Mondinos N, et al. Synthesis and characterisation of nanohydroxyapatite using an ultrasound assisted method[J]. Ultrasonics Sonochemistry, 2009, 16(4): 469-474. [3] Orgel J, Miller A, Irving TC, et al. The in situ supermolecular structure of type I collagen[J]. Structure, 2001, 9(11): 1061-1069. [4] Stamov DR, Stock E, Franz CM, et al. Imaging collagen type I fibrillogenesis with high spatiotemporal resolution[J]. Ultramicroscopy, 2015, 149: 86-94. [5] Cui FZ, Li Y, Ge J. Self-assembly of mineralized collagen composites[J]. Materials Science and Engineering: R: Reports, 2007, 57(1-6): 1-27. [6] Qiu ZY, Cui Y, Tao CS, et al. Mineralized collagen: rationale, current status, and clinical applications[J]. Materials (Basel), 2015, 8(8): 4733-4750. [7] Ambre AH, Katti DR, Katti KS. Biomineralized hydroxyapatite nanoclay composite scaffolds with polycaprolactone for stem cell-based bone tissue engineering[J]. Journal of Biomedical Materials Research Part A, 2015, 103(6): 2077-2101. [8] Leng Y, Yang F, Wang Q, et al. Material-based therapy for bone nonunion[J]. Materials & Design, 2019, 183 : 108161. [9] Holmes D. Non-union bone fracture: a quicker fix[J]. Nature, 2017, 550(7677): S193. [10] Cui Y, Zhu T, Li D, et al. Bisphosphonate-functionalized scaffolds for enhanced bone regeneration[J]. Advanced Healthcare Materials, 2019, 8(23): 1901073. [11] Chocholata P, Kulda V, Babuska V. Fabrication of scaffolds for bone-tissue regeneration[J]. Materials (Basel), 2019, 12(4): 568. [12] De Mori A, Fernández PM, Blunn G, et al. 3D printing and electrospinning of composite hydrogels for cartilage and bone tissue engineering[J]. Polymers (Basel), 2018, 10(3): 285. [13] Scott TG, Blackburn G, Ashley M, et al. Advances in bionanomaterials for bone tissue engineering[J]. Journal of Nanoscience Nanotechnology, 2013, 13(1): 1-22. [14] Nudelman F, Lausch AJ, Sommerdijk N, et al. In vitro models of collagen biomineralization[J]. Journal of Structural Biology, 2013, 183(2): 258-269. [15] Tracy BM, Doremus RH. Direct electron microscopy studies of the bone—hydroxylapatite interface[J]. Journal of Biomedical Materials Research, 2018,18(7): 719-726. [16] Gross U, Stranz V. The interface of various glasses and glass ceramics with a bony implantation bed[J]. Journal of Biomedical Materials Research, 2019, 19(3): 251-271. [17] Zhong L, Qu Y, Shi K, et al. Biomineralized polymer matrix composites for bone tissue repair: a review[J]. Science China Chemistry, 2018, 61(12): 1553-1567. [18] Rhee SH, Lee JD, Tanaka J. Nucleation of hydroxyapatite crystal through chemical interaction with collagen[J]. Journal of the American Ceramic Society, 2000, 83(11): 2890-2892. [19] Zhang W, Huang ZL, Liao SS, et al. Nucleation sites of calcium phosphate crystals during collagen mineralization[J]. Journal of the American Ceramic Society, 2003, 86(6): 1052-1054. [20] Wang Y, Azais T, Robin M, et al. The predominant role of collagen in the nucleation, growth, structure and orientation of bone apatite[J]. Nature Materials, 2012, 11(8): 724-733. [21] Landis WJ, Silver FH. Mineral deposition in the extracellular matrices of vertebrate tissues: identification of possible apatite nucleation sites on type I collagen[J]. Cells Tissues Organs, 2009, 189(1-4): 20-24. [22] Bradt JH, Mertig M, Teresiak A, et al. Biomimetic mineralization of collagen by combined fibril assembly and calcium phosphate formation[J]. Chemistry of Materials, 1999, 11(10): 2694-2701. [23] Zhang Z, Zhang C, Guo Q, et al. Application of recombinant collagen type Ⅰ combined with polyaspartic acid in biomimetic biomineralization[J]. Acta Academiae Medicinae Sinicae, 2017, 39(3): 318-323. [24] Yang C, Li J, Zhu C, et al. Advanced antibacterial activity of biocompatible tantalum nanofilm via enhanced local innate immunity[J]. Acta Biomaterialia, 2019, 89: 403-418. [25] Maas M, Guo P, Keeney M, et al. Preparation of mineralized nanofibers: collagen fibrils containing calcium phosphate[J]. Nano Letters, 2011, 11(3): 1383-1388. [26] Ficai A, Andronescu E, Voicu G, et al. Self-assembled collagen/hydroxyapatite composite materials[J]. Chemical Engineering Journal, 2010, 160(2): 794-800. [27] Park JS, Chu JS, Tsou AD, et al. The effect of matrix stiffness on the differentiation of mesenchymal stem cells in response to TGF-β[J]. Biomaterials, 2011, 32(16): 3921-3930. [28] Miron-Mendoza M, Seemann J, Grinnell F. The differential regulation of cell motile activity through matrix stiffness and porosity in three dimensional collagen matrices[J]. Biomaterials, 2010, 31(25): 6425-6435. [29] Lin X, Shi Y, Cao Y, et al. Recent progress in stem cell differentiation directed by material and mechanical cues[J]. Biomedical Materials, 2016, 11(1): 014109. [30] de Melo Pereira D, Eischen-Loges M, Birgani ZT, et al. Proliferation and osteogenic differentiation of hMSCs on biomineralized collagen[J]. Frontiers in Bioengineering Biotechnology, 2020, 8: 554565. [31] Zan X, Sitasuwan P, Feng S, et al. Effect of roughness on in situ biomineralized CaP-collagen coating on the osteogenesis of mesenchymal stem cells[J]. Langmuir, 2016, 32(7): 1808-1817. [32] Wang J, Qu Y, Chen C, et al. Fabrication of collagen membranes with different intrafibrillar mineralization degree as a potential use for GBR[J]. Materials Science & Engineering. C: Materials for Biological Applications, 2019, 104: 109959. [33] Boraschi-Diaz I, Mort JS, Br?mme D, et al. Collagen type I degradation fragments act through the collagen receptor LAIR-1 to provide a negative feedback for osteoclast formation[J]. Bone, 2018, 117: 23-30. [34] Wang J, Yang Q, Mao C, et al. Osteogenic differentiation of bone marrow mesenchymal stem cells on the collagen/silk fibroin bi-template-induced biomimetic bone substitutes[J]. Journal of Biomedical Materials Research Part A, 2012, 100A(11): 2929-2938. [35] Yang M, Zhou G, Castano-Izquierdo H, et al. Biomineralization of natural collagenous nanofibrous membranes and their potential use in bone tissue engineering[J]. Journal of Biomedical Nanotechnology, 2015, 11(3): 447-456. [36] Huang C, Qin L, Yan W, et al. Clinical evaluation following the use of mineralized collagen graft for bone defects in revision total hip arthroplasty[J]. Regenerative Biomaterials, 2015, 2(4): 245-249. [37] Mohammadi M, Shaegh SAM, Alibolandi M, et al. Micro and nanotechnologies for bone regeneration: recent advances and emerging designs[J]. Journal of Controlled Release, 2018, 274: 35-55. [38] Hassanzadeh A, Ashrafihelan J, Salehi R, et al. Development and biocompatibility of the injectable collagen/nano-hydroxyapatite scaffolds as in situ forming hydrogel for the hard tissue engineering application[J]. Artificial Cells Nanomedicine and Biotechnology, 2021, 49(1): 136-146. [39] Qiu ZY, Tao CS, Cui H, et al. High-strength mineralized collagen artificial bone[J]. Frontiers of Materials Science, 2014, 8(1): 53-62. [40] Chen Z, Wang J, Qiu ZY, et al. The application of mineralized collagen bone grafts in osteoporotic thoracolumbar fractures[J]. Journal of Biomaterials and Tissue Engineering, 2017, 7(11): 1122-1129. [41] Gao C, Qiu ZY, Hou JW, et al. Clinical observation of mineralized collagen bone grafting after curettage of benign bone tumors[J]. Regenerative Biomaterials, 2020, 7(6): 567-575. [42] Zhang Z, Zhang S, Li Z, et al. Osseointegration effect of biomimetic intrafibrillarly mineralized collagen applied simultaneously with titanium implant: a pilot in vivo study[J]. Clinical Oral Implants Research, 2019, 30(7): 637-648. [43] Wang F, Wang L, Feng Y, et al. Evaluation of an artificial vertebral body fabricated by a tantalum-coated porous titanium scaffold for lumbar vertebral defect repair in rabbits[J]. Scientific Reports, 2018, 8(1): 8927. [44] Lian X, Liu H, Wang X, et al. Antibacterial and biocompatible properties of vancomycin-loaded nano-hydroxyapatite/collagen/poly (lactic acid) bone substitute[J]. Progress in Natural Science: Materials International, 2013, 23(6): 549-556. [45] He Y, Jin Y, Ying X, et al. Development of an antimicrobial peptide-loaded mineralized collagen bone scaffold for infective bone defect repair[J]. Regenerative Biomaterials, 2020, 7(5): 515-525. [46] Lu M, Liao J, Dong J, et al. An effective treatment of experimental osteomyelitis using the antimicrobial titanium/silver-containing nHP66 (nano-hydroxyapatite/polyamide-66) nanoscaffold biomaterials[J]. Scientific Reports, 2016, 6(1): 39174. [47] Boda SK, Almoshari Y, Wang H, et al. Mineralized nanofiber segments coupled with calcium-binding BMP-2 peptides for alveolar bone regeneration[J]. Acta Biomaterialia, 2019, 85: 282-293. [48] Wang E, Han J, Zhang X, et al. Efficacy of a mineralized collagen bone-grafting material for peri-implant bone defect reconstruction in mini pigs[J]. Regenerative Biomaterials, 2019, 6(2): 107-111. [49] Zhang C, Yan B, Cui Z, et al. Bone regeneration in minipigs by intrafibrillarly-mineralized collagen loaded with autologous periodontal ligament stem cells[J]. Scientific Reports, 2017, 7(1): 10519. [50] Sun Y, Wang C, Chen Q, et al. Effects of the bilayer nano-hydroxyapatite/mineralized collagen-guided bone regeneration membrane on site preservation in dogs[J]. Journal of Biomaterials Applications, 2017, 32(2): 242-256. [51] Yu Q, Wang C, Yang J, et al. Mineralized collagen/Mg-Ca alloy combined scaffolds with improved biocompatibility for enhanced bone response following tooth extraction[J]. Biomedical Materials, 2018, 13(6): 065008. [52] Tiffany AS, Gray DL, Woods TJ, et al. The inclusion of zinc into mineralized collagen scaffolds for craniofacial bone repair applications[J]. Acta Biomaterialia, 2019, 93: 86-96. [53] Rajendra PB, Mathew TP, Agrawal A, et al. Characteristics of associated craniofacial trauma in patients with head injuries: An experience with 100 cases[J]. Journal of Emergencies, Trauma, and Shock, 2009, 2(2): 89-94. [54] Carvalho TBO, Cancian LRL, Marques CG, et al. Six years of facial trauma care: an epidemiological analysis of 355 cases[J]. Brazilian Journal of Otorhinolaryngology, 2010,76(5): 565-574. [55] Wang S, Zhao Z, Yang Y, et al. A high-strength mineralized collagen bone scaffold for large-sized cranial bone defect repair in sheep[J]. Regenerative Biomaterials, 2018, 5(5): 283-292. [56] Ren X, Tu V, Bischoff D, et al. Nanoparticulate mineralized collagen scaffolds induce in vivo bone regeneration independent of progenitor cell loading or exogenous growth factor stimulation[J]. Biomaterials, 2016, 89: 67-78. [57] Liu S, Sun Y, Fu Y, et al. Bioinspired collagen-apatite nanocomposites for bone regeneration[J]. Journal of Endodontics, 2016, 42(8): 1226-1232.
|