设为首页 |  加入收藏
首页首页 期刊简介 消息通知 编委会 电子期刊 投稿须知 广告合作 联系我们
生物矿化胶原在骨缺损治疗中的研究及应用现状

Research and application status of biomineralized collagen in the treatment of bone defect

作者: 孙守野  李少荣  崔宇韬  许航  王靖玮  陈冲  王雁冰  彭传刚 
单位:吉林大学第二医院(长春 &nbsp;130041),<br />通信作者:彭传刚。E-mail: pengcg@ jlu. edu. cn
关键词: 生物矿化胶原;药物载体;骨缺损;临床应用;骨组织工程 
分类号:R318.08
出版年·卷·期(页码):2022·41·4(429-435)
摘要:

因感染、外伤或骨肿瘤切除引起的骨缺损非常普遍,其中一小部分(5%~10%)由于骨不连而无法愈合,需要手术治疗。目前,治疗这些缺损的主要方法有自体移植物、异种移植物、异体移植物或合成移植物。与这些治疗相关的主要问题包括感染、疼痛和供区发病率。生物矿化胶原是由胶原和羟基磷灰石组成的新型、安全的骨移植替代材料,不仅自身具有治疗骨缺损的能力,而且其优良的生物相容性、机械性能,还可以作为一种兼容、坚固的载体,通过搭载一些促进血管生长或者骨生长的药物,共同发挥成骨作用。同时,矿化胶原还能自身降解,避免了二次手术的痛苦。本文介绍了生物矿化胶原的定义、结构,总结了生物矿化胶原的合成方法、作用机制,分析了生物矿化胶原在骨缺损治疗方面的应用,从而证明了生物矿化胶原材料在骨缺损治疗方面的良好应用前景。

Bone defects caused by infection, trauma or bone tumor resection are very common, and a small part ( 5 % -10 % ) of them cannot heal due to nonunion, requiring surgical treatment. At present, the main methods for the treatment of these defects are autologous graft, xenotransplantation allogeneic graft or synthetic graft. The main problems related to these treatments include infection, pain and donor site morbidity. Biomineralized collagen is a new and safe alternative material for bone transplantation composed of collagen and hydroxyapatite. It not only has the ability to treat bone defects, but also has excellent biocompatibility and mechanical properties. It can also be used as a compatible and solid carrier to jointly exert the osteogenic effect by carrying some drugs that promote vascular growth or bone growth. At the same time, the mineralized collagen can also degrade itself, thus avoiding the pain of the second operation. In this paper, the definition and structure of biomineralized collagen were introduced, the synthetic methods and action mechanism of biomineralized collagen were summarized, and the application of biomineralized collagen in the treatment of bone defect was analyzed, which proved the good application prospect of biomineralized collagen material in the treatment of bone defect.

参考文献:

[1] Zhou H, Lee J. Nanoscale hydroxyapatite particles for bone tissue engineering[J]. Acta Biomaterialia, 2011, 7(7): 2769-2781.
[2] Poinern GE, Brundavanam RK, Mondinos N, et al. Synthesis and characterisation of nanohydroxyapatite using an ultrasound assisted method[J]. Ultrasonics Sonochemistry, 2009, 16(4): 469-474.
[3] Orgel J, Miller A, Irving TC, et al. The in situ supermolecular structure of type I collagen[J]. Structure, 2001, 9(11): 1061-1069.
[4] Stamov DR, Stock E, Franz CM, et al. Imaging collagen type I fibrillogenesis with high spatiotemporal resolution[J]. Ultramicroscopy, 2015, 149: 86-94.
[5] Cui FZ, Li Y, Ge J. Self-assembly of mineralized collagen composites[J]. Materials Science and Engineering: R: Reports, 2007, 57(1-6): 1-27.
[6] Qiu ZY, Cui Y, Tao CS, et al. Mineralized collagen: rationale, current status, and clinical applications[J]. Materials (Basel), 2015, 8(8): 4733-4750.
[7] Ambre AH, Katti DR, Katti KS. Biomineralized hydroxyapatite nanoclay composite scaffolds with polycaprolactone for stem cell-based bone tissue engineering[J]. Journal of Biomedical Materials Research Part A, 2015, 103(6): 2077-2101.
[8] Leng Y, Yang F, Wang Q, et al. Material-based therapy for bone nonunion[J]. Materials & Design, 2019, 183 : 108161.
[9] Holmes D. Non-union bone fracture: a quicker fix[J]. Nature, 2017, 550(7677): S193.
[10] Cui Y, Zhu T, Li D, et al. Bisphosphonate-functionalized scaffolds for enhanced bone regeneration[J]. Advanced Healthcare Materials, 2019, 8(23): 1901073.
[11] Chocholata P, Kulda V, Babuska V. Fabrication of scaffolds for bone-tissue regeneration[J]. Materials (Basel), 2019, 12(4): 568.
[12] De Mori A, Fernández PM, Blunn G, et al. 3D printing and electrospinning of composite hydrogels for cartilage and bone tissue engineering[J]. Polymers (Basel), 2018, 10(3): 285.
[13] Scott TG, Blackburn G, Ashley M, et al. Advances in bionanomaterials for bone tissue engineering[J]. Journal of Nanoscience Nanotechnology, 2013, 13(1): 1-22.
[14] Nudelman F, Lausch AJ, Sommerdijk N, et al. In vitro models of collagen biomineralization[J]. Journal of Structural Biology, 2013, 183(2): 258-269.
[15] Tracy BM, Doremus RH. Direct electron microscopy studies of the bone—hydroxylapatite interface[J]. Journal of Biomedical Materials Research, 2018,18(7): 719-726.
[16] Gross U, Stranz V. The interface of various glasses and glass ceramics with a bony implantation bed[J]. Journal of Biomedical Materials Research, 2019, 19(3): 251-271.
[17] Zhong L, Qu Y, Shi K, et al. Biomineralized polymer matrix composites for bone tissue repair: a review[J]. Science China Chemistry, 2018, 61(12): 1553-1567.
[18] Rhee SH, Lee JD, Tanaka J. Nucleation of hydroxyapatite crystal through chemical interaction with collagen[J]. Journal of the American Ceramic Society, 2000, 83(11): 2890-2892.
[19] Zhang W, Huang ZL, Liao SS, et al. Nucleation sites of calcium phosphate crystals during collagen mineralization[J]. Journal of the American Ceramic Society, 2003, 86(6): 1052-1054.
[20] Wang Y, Azais T, Robin M, et al. The predominant role of collagen in the nucleation, growth, structure and orientation of bone apatite[J]. Nature Materials, 2012, 11(8): 724-733.
[21] Landis WJ, Silver FH. Mineral deposition in the extracellular matrices of vertebrate tissues: identification of possible apatite nucleation sites on type I collagen[J]. Cells Tissues Organs, 2009, 189(1-4): 20-24.
[22] Bradt JH, Mertig M, Teresiak A, et al. Biomimetic mineralization of collagen by combined fibril assembly and calcium phosphate formation[J]. Chemistry of Materials, 1999, 11(10): 2694-2701.
[23] Zhang Z, Zhang C, Guo Q, et al. Application of recombinant collagen type Ⅰ combined with polyaspartic acid in biomimetic biomineralization[J]. Acta Academiae Medicinae Sinicae, 2017, 39(3): 318-323.
[24] Yang C, Li J, Zhu C, et al. Advanced antibacterial activity of biocompatible tantalum nanofilm via enhanced local innate immunity[J]. Acta Biomaterialia, 2019, 89: 403-418.
[25] Maas M, Guo P, Keeney M, et al. Preparation of mineralized nanofibers: collagen fibrils containing calcium phosphate[J]. Nano Letters, 2011, 11(3): 1383-1388.
[26] Ficai A, Andronescu E, Voicu G, et al. Self-assembled collagen/hydroxyapatite composite materials[J]. Chemical Engineering Journal, 2010, 160(2): 794-800.
[27] Park JS, Chu JS, Tsou AD, et al. The effect of matrix stiffness on the differentiation of mesenchymal stem cells in response to TGF-β[J]. Biomaterials, 2011, 32(16): 3921-3930.
[28] Miron-Mendoza M, Seemann J, Grinnell F. The differential regulation of cell motile activity through matrix stiffness and porosity in three dimensional collagen matrices[J]. Biomaterials, 2010, 31(25): 6425-6435.
[29] Lin X, Shi Y, Cao Y, et al. Recent progress in stem cell differentiation directed by material and mechanical cues[J]. Biomedical Materials, 2016, 11(1): 014109.
[30] de Melo Pereira D, Eischen-Loges M, Birgani ZT, et al. Proliferation and osteogenic differentiation of hMSCs on biomineralized collagen[J]. Frontiers in Bioengineering Biotechnology, 2020, 8: 554565.
[31] Zan X, Sitasuwan P, Feng S, et al. Effect of roughness on in situ biomineralized CaP-collagen coating on the osteogenesis of mesenchymal stem cells[J]. Langmuir, 2016, 32(7): 1808-1817.
[32] Wang J, Qu Y, Chen C, et al. Fabrication of collagen membranes with different intrafibrillar mineralization degree as a potential use for GBR[J]. Materials Science & Engineering. C: Materials for Biological Applications, 2019, 104: 109959.
[33] Boraschi-Diaz I, Mort JS, Br?mme D, et al. Collagen type I degradation fragments act through the collagen receptor LAIR-1 to provide a negative feedback for osteoclast formation[J]. Bone, 2018, 117: 23-30.
[34] Wang J, Yang Q, Mao C, et al. Osteogenic differentiation of bone marrow mesenchymal stem cells on the collagen/silk fibroin bi-template-induced biomimetic bone substitutes[J]. Journal of Biomedical Materials Research Part A, 2012, 100A(11): 2929-2938.
[35] Yang M, Zhou G, Castano-Izquierdo H, et al. Biomineralization of natural collagenous nanofibrous membranes and their potential use in bone tissue engineering[J]. Journal of Biomedical Nanotechnology, 2015, 11(3): 447-456.
[36] Huang C, Qin L, Yan W, et al. Clinical evaluation following the use of mineralized collagen graft for bone defects in revision total hip arthroplasty[J]. Regenerative Biomaterials, 2015, 2(4): 245-249.
[37] Mohammadi M, Shaegh SAM, Alibolandi M, et al. Micro and nanotechnologies for bone regeneration: recent advances and emerging designs[J]. Journal of Controlled Release, 2018, 274: 35-55.
[38] Hassanzadeh A, Ashrafihelan J, Salehi R, et al. Development and biocompatibility of the injectable collagen/nano-hydroxyapatite scaffolds as in situ forming hydrogel for the hard tissue engineering application[J]. Artificial Cells Nanomedicine and Biotechnology, 2021, 49(1): 136-146.
[39] Qiu ZY, Tao CS, Cui H, et al. High-strength mineralized collagen artificial bone[J]. Frontiers of Materials Science, 2014, 8(1): 53-62.
[40] Chen Z, Wang J, Qiu ZY, et al. The application of mineralized collagen bone grafts in osteoporotic thoracolumbar fractures[J]. Journal of Biomaterials and Tissue Engineering, 2017, 7(11): 1122-1129.
[41] Gao C, Qiu ZY, Hou JW, et al. Clinical observation of mineralized collagen bone grafting after curettage of benign bone tumors[J]. Regenerative Biomaterials, 2020, 7(6): 567-575.
[42] Zhang Z, Zhang S, Li Z, et al. Osseointegration effect of biomimetic intrafibrillarly mineralized collagen applied simultaneously with titanium implant: a pilot in vivo study[J]. Clinical Oral Implants Research, 2019, 30(7): 637-648.
[43] Wang F, Wang L, Feng Y, et al. Evaluation of an artificial vertebral body fabricated by a tantalum-coated porous titanium scaffold for lumbar vertebral defect repair in rabbits[J]. Scientific Reports, 2018, 8(1): 8927.
[44] Lian X, Liu H, Wang X, et al. Antibacterial and biocompatible properties of vancomycin-loaded nano-hydroxyapatite/collagen/poly (lactic acid) bone substitute[J]. Progress in Natural Science: Materials International, 2013, 23(6): 549-556.
[45] He Y, Jin Y, Ying X, et al. Development of an antimicrobial peptide-loaded mineralized collagen bone scaffold for infective bone defect repair[J]. Regenerative Biomaterials, 2020, 7(5): 515-525.
[46] Lu M, Liao J, Dong J, et al. An effective treatment of experimental osteomyelitis using the antimicrobial titanium/silver-containing nHP66 (nano-hydroxyapatite/polyamide-66) nanoscaffold biomaterials[J]. Scientific Reports, 2016, 6(1): 39174.
[47] Boda SK, Almoshari Y, Wang H, et al. Mineralized nanofiber segments coupled with calcium-binding BMP-2 peptides for alveolar bone regeneration[J]. Acta Biomaterialia, 2019, 85: 282-293.
[48] Wang E, Han J, Zhang X, et al. Efficacy of a mineralized collagen bone-grafting material for peri-implant bone defect reconstruction in mini pigs[J]. Regenerative Biomaterials, 2019, 6(2): 107-111.
[49] Zhang C, Yan B, Cui Z, et al. Bone regeneration in minipigs by intrafibrillarly-mineralized collagen loaded with autologous periodontal ligament stem cells[J]. Scientific Reports, 2017, 7(1): 10519.
[50] Sun Y, Wang C, Chen Q, et al. Effects of the bilayer nano-hydroxyapatite/mineralized collagen-guided bone regeneration membrane on site preservation in dogs[J]. Journal of Biomaterials Applications, 2017, 32(2): 242-256.
[51] Yu Q, Wang C, Yang J, et al. Mineralized collagen/Mg-Ca alloy combined scaffolds with improved biocompatibility for enhanced bone response following tooth extraction[J]. Biomedical Materials, 2018, 13(6): 065008.
[52] Tiffany AS, Gray DL, Woods TJ, et al. The inclusion of zinc into mineralized collagen scaffolds for craniofacial bone repair applications[J]. Acta Biomaterialia, 2019, 93: 86-96.
[53] Rajendra PB, Mathew TP, Agrawal A, et al. Characteristics of associated craniofacial trauma in patients with head injuries: An experience with 100 cases[J]. Journal of Emergencies, Trauma, and Shock, 2009, 2(2): 89-94.
[54] Carvalho TBO, Cancian LRL, Marques CG, et al. Six years of facial trauma care: an epidemiological analysis of 355 cases[J]. Brazilian Journal of Otorhinolaryngology, 2010,76(5): 565-574.
[55] Wang S, Zhao Z, Yang Y, et al. A high-strength mineralized collagen bone scaffold for large-sized cranial bone defect repair in sheep[J]. Regenerative Biomaterials, 2018, 5(5): 283-292.
[56] Ren X, Tu V, Bischoff D, et al. Nanoparticulate mineralized collagen scaffolds induce in vivo bone regeneration independent of progenitor cell loading or exogenous growth factor stimulation[J]. Biomaterials, 2016, 89: 67-78.
[57] Liu S, Sun Y, Fu Y, et al. Bioinspired collagen-apatite nanocomposites for bone regeneration[J]. Journal of Endodontics, 2016, 42(8): 1226-1232.

服务与反馈:
文章下载】【加入收藏
提示:您还未登录,请登录!点此登录
 
友情链接  
地址:北京安定门外安贞医院内北京生物医学工程编辑部
电话:010-64456508  传真:010-64456661
电子邮箱:llbl910219@126.com