设为首页 |  加入收藏
首页首页 期刊简介 消息通知 编委会 电子期刊 投稿须知 广告合作 联系我们
基于三维卷积经网络降低肺结节检测假阳性的方法

Detection of false positive reduction of pulmonary nodules based on three-dimensional convolutional neural network

作者: 侯智超  杨杨  李晓琴  王晓曦  高斌 
单位:北京工业大学环境与生命学部(北京100124), <p>通信作者:李晓琴。E-mail:lxq0811@bjut.edu.cn</p>
关键词: 图像处理;深度学习;三维卷积神经网络;计算机辅助检测;肺结节 
分类号:R31804:TP391
出版年·卷·期(页码):2022·41·4(352-359)
摘要:

目的为降低在计算机断层扫描图像中筛查肺结节的假阳性率,提出了一种基干三维卷积
神经网络降低肺结节检测假阳性的方法。方法选用美国2016年肺结节分析挑战赛提供的两个版本的开源数据集,分别用干模型的训练和测试。首先应用终像增强技术解决数据集中正负样本分布不均衡的问题,并基于多视角采样技术扩充正样本;基于自动编码器及 K-means 无监督聚类方法将负样本分为5类并分别与正样本组合得到了5个训练集该方法既减少了每个数据集中负样本的样本量又保证了负样本的多样性。然后搭建三维卷积神经网络,并分别使用构建的5个训练集训练网络,在此过程中不断调整和优化网络结构和参数得到5组降低肺结节假阳性检测模型接着利用简易集成法对肺结节进行综合判决。结果经测试模型的敏感性和特异性分别为0.966和0.996通过FROC曲线计算得出 CPM得分为0.886。结论本文提出的方法可以有效降低肺结节检测假阳性,可以为肺癌筛查工作提供有效帮助。

Objective In order to reduce the false-positive rate of pulmonarynodules in the preliminary screening of CT imagesa method was proposed based on the 3D convolutional neural network(3D-CNN) Methods Two versions of open source datasets provided by the 2016 pulmonary nodule analysis challenge in the United States were selected for training and testing of the modelTo balance the distribution of the nositive anc negative samples,we augmented the positive samples by the multi-view sampling and classified the negative samples into five categories bv the auto-encoder and the K-means unsupervised clustering. Then we got five training sets through combining the negative samples with the positive samples. This method reduced the size of negative samples and ensured its diversity. Next, we constructed the 3D convolutional neural network and respectively trained it with the five training sets,and adjusted the structure and parameters until obtaining a better model.Finallythe pulmonary nodules were judged by synthesizing the results of the five models.Results The sensitivity and specificity of the model were 0.966 and 0.996 respectively,and the CPM score was 0.886 calculated by the FROC curve.Conclusions The methoc we proposed can effectively reduce the false-positive detection of pulmonary nodules and provide help for lung
cancer screening.

参考文献:

[1] Rolke HB,Bakke PS,Gallefoss F.Delays in the diagnostic
pathways for primary pulmonary carcinoma in Southern Norway J1.Respiratory Medicine,2007101(6):1251-1257.
[2] National Lung Screening Trial Research Team; Aberle DR,
Adams AM,Berg CD, et al.Reduced lung-cancer mortality with low-dose computed tomographic screening[J].The New England Journal of Medicine2011365(5):395-409.
[3]赵愉,鲁雯,王远军.肺结节计算机辅助检测技术研究概述
J.生物医学工程学杂志,2014,31(5):1172-1177.
Zhao Y,Lu W,Wang YJ.A review on the research progress of the computer-aided detection of pulmonarynodule[J]. Journal of Biomedical Engineering,201431(5):1172-1177
[4] Anirudh R,Thiagarajan JJ,Bremer Tet al.Lung nodule detection
using 3D convolutional neural networks trained on weakly labeled data[C]//Conference on Medical Imaging 2016:Computer Aided Diagnosis. San Diego,CAUSA: SPIE,2016,9785:32-38.
[5] Cheng JZ,Ni D,Chou YHet al.Computer-aided diagnosis with
deep learning architecture: applications to breast lesions in US images and pulmonary nodules in CTscans[J].Scientific Reports,2016,6:24454.
[6] Setio AAA,Ciompi F,Litjens G,et al.Pulmonary nodule
detection in ct images:false positive reduction using multi-view convolutional networks[J. IEEE Transactions on Medica Imaging,2016,35(5):1160-1169
[7] Ding J,Li A,Hu Z,et al.Accurate pulmonary nodule detection ir
computed tomography images using deep convolutional neura networksM//Medical Image Computing and Computer Assisted Intervention-MICCAI 2017.Lecture Notes in Computer Science Berlin:Springer,Cham,201710435:559-567
[8] Kim BC,Yoon JS,Choi JSet al.Multi-scale gradual integratior
CNN for false positive reduction in pulmonarynodule detectior[J].Neural Networks,2019,115:1-10
[9] Setio AAA,Traverso A,de Bel Tet al.Validation comparison
and combination of algorithms for automatic detection of pulmonary nodules in computed tomography images:the LUNA16 challenge[J1.Medical Image Analysis,2017,42:1-13
[10]" Tang H,Kim DR,Xie X.Automated pulmonary nodule detection
using 3D deep convolutional neural networks[C]//2018IEEE15th International Symposium on Biomedical Imaging Washington,DCUSA:IEEE Press2018:523-526
[11]张福玲,张少敏.应用于CT图像肺结节检测的深度学习方法
综述[J].计算机工程与应用,202056(13):20-32
Zhang FL,Zhang SM.Review of deep learning methods applied to lung nodule detection in CT images[J].Computer Engineering and Applications,2020,56(13):20-32
「12] 谢未央,陈彦博,王季勇,等.基于卷积神经网络的 CT 图像肺结节检测J1.计算机工程与设计201940(12):3575-3581
Xie WY,Chen YB,Wang JY,et al.Detection of pulmonary nodules in CT images based on convolutional neural networksJ]. Computer Engineering and Design,2019,40(12):3575-3581.
[13] Dou Q,Chen H,YuL,et al.Multi-level contextual 3D CNNs for
false positive reduction in pulmonarynodule detection[J] IEEE Transactions on Biomedical Engineering,2016,64(7):1558-1567.
[14] Xiao Z,Du N,Geng Let al.Multi-scale heterogeneous 3D CNN
for false-positive reduction in pulmonary nodule detection,based on chest CT images[J].Applied Sciences,20199(16):3261.[15] 高慧明,赵涓涓,刘继华,等.多尺度卷积神经网络用于肺结节
假阳性降低[J].计算机工程与设计,2019,40(9):2718-2724.
Gao HMZhao JILiu JHet al.Multi-scale convolutional neural
network for pulmonary nodule false positive reduction [J] Computer Engineering and Design,201940(9):2718-2724.[16] 秦红,王皓,魏晓超,等.安全的常数轮多用户k-均值聚类计
算协议[J].计算机研究与发展,202057(10):2188-2200 Qin H,Wang H,Wei XC,et al.Secure constant-round multi-userk-means clustering protocol[J]. Journal of Computer Research and Development,202057(10):2188-2200.
[17] Lecun Y,Bottou L,Bengio Y,et al.Gradient-based learning
applied to document recognition[J]. Proceedings of the IEEE,1998,86(11):2278-2324.
[18] Nair V,Hinton GE. Rectified linear units improve restricted
Boltzmann machinesC// the 27th International Conference on Machine Learning.HaifaIsraelICML-102010:807-814.
[19] Sun L,Li W,Ning X,et al.Gradient-enhanced softmax for face
recognition[J].IEICE Transactions on Information and Systems,2020E103.D(5):1185-1189
[20]任敬谋,李晓琴.基于非结节自动分类的二维卷积网络在肺结
节检测假阳性减少中的应用[J].北京生物医学工程,2020.39(4):389-397.
Ren JMLi XO.The two-dimensional convolution network based on nonnodule automatic classification for reduction offalse positivity in pulmonary nodule detection[J].Beijing Biomedical Engineering,2020,39(4):389-397.

服务与反馈:
文章下载】【加入收藏
提示:您还未登录,请登录!点此登录
 
友情链接  
地址:北京安定门外安贞医院内北京生物医学工程编辑部
电话:010-64456508  传真:010-64456661
电子邮箱:llbl910219@126.com