[1] Rolke HB,Bakke PS,Gallefoss F.Delays in the diagnostic pathways for primary pulmonary carcinoma in Southern Norway J1.Respiratory Medicine,2007101(6):1251-1257. [2] National Lung Screening Trial Research Team; Aberle DR, Adams AM,Berg CD, et al.Reduced lung-cancer mortality with low-dose computed tomographic screening[J].The New England Journal of Medicine2011365(5):395-409. [3]赵愉,鲁雯,王远军.肺结节计算机辅助检测技术研究概述 J.生物医学工程学杂志,2014,31(5):1172-1177. Zhao Y,Lu W,Wang YJ.A review on the research progress of the computer-aided detection of pulmonarynodule[J]. Journal of Biomedical Engineering,201431(5):1172-1177 [4] Anirudh R,Thiagarajan JJ,Bremer Tet al.Lung nodule detection using 3D convolutional neural networks trained on weakly labeled data[C]//Conference on Medical Imaging 2016:Computer Aided Diagnosis. San Diego,CAUSA: SPIE,2016,9785:32-38. [5] Cheng JZ,Ni D,Chou YHet al.Computer-aided diagnosis with deep learning architecture: applications to breast lesions in US images and pulmonary nodules in CTscans[J].Scientific Reports,2016,6:24454. [6] Setio AAA,Ciompi F,Litjens G,et al.Pulmonary nodule detection in ct images:false positive reduction using multi-view convolutional networks[J. IEEE Transactions on Medica Imaging,2016,35(5):1160-1169 [7] Ding J,Li A,Hu Z,et al.Accurate pulmonary nodule detection ir computed tomography images using deep convolutional neura networksM//Medical Image Computing and Computer Assisted Intervention-MICCAI 2017.Lecture Notes in Computer Science Berlin:Springer,Cham,201710435:559-567 [8] Kim BC,Yoon JS,Choi JSet al.Multi-scale gradual integratior CNN for false positive reduction in pulmonarynodule detectior[J].Neural Networks,2019,115:1-10 [9] Setio AAA,Traverso A,de Bel Tet al.Validation comparison and combination of algorithms for automatic detection of pulmonary nodules in computed tomography images:the LUNA16 challenge[J1.Medical Image Analysis,2017,42:1-13 [10]" Tang H,Kim DR,Xie X.Automated pulmonary nodule detection using 3D deep convolutional neural networks[C]//2018IEEE15th International Symposium on Biomedical Imaging Washington,DCUSA:IEEE Press2018:523-526 [11]张福玲,张少敏.应用于CT图像肺结节检测的深度学习方法 综述[J].计算机工程与应用,202056(13):20-32 Zhang FL,Zhang SM.Review of deep learning methods applied to lung nodule detection in CT images[J].Computer Engineering and Applications,2020,56(13):20-32 「12] 谢未央,陈彦博,王季勇,等.基于卷积神经网络的 CT 图像肺结节检测J1.计算机工程与设计201940(12):3575-3581 Xie WY,Chen YB,Wang JY,et al.Detection of pulmonary nodules in CT images based on convolutional neural networksJ]. Computer Engineering and Design,2019,40(12):3575-3581. [13] Dou Q,Chen H,YuL,et al.Multi-level contextual 3D CNNs for false positive reduction in pulmonarynodule detection[J] IEEE Transactions on Biomedical Engineering,2016,64(7):1558-1567. [14] Xiao Z,Du N,Geng Let al.Multi-scale heterogeneous 3D CNN for false-positive reduction in pulmonary nodule detection,based on chest CT images[J].Applied Sciences,20199(16):3261.[15] 高慧明,赵涓涓,刘继华,等.多尺度卷积神经网络用于肺结节 假阳性降低[J].计算机工程与设计,2019,40(9):2718-2724. Gao HMZhao JILiu JHet al.Multi-scale convolutional neural network for pulmonary nodule false positive reduction [J] Computer Engineering and Design,201940(9):2718-2724.[16] 秦红,王皓,魏晓超,等.安全的常数轮多用户k-均值聚类计 算协议[J].计算机研究与发展,202057(10):2188-2200 Qin H,Wang H,Wei XC,et al.Secure constant-round multi-userk-means clustering protocol[J]. Journal of Computer Research and Development,202057(10):2188-2200. [17] Lecun Y,Bottou L,Bengio Y,et al.Gradient-based learning applied to document recognition[J]. Proceedings of the IEEE,1998,86(11):2278-2324. [18] Nair V,Hinton GE. Rectified linear units improve restricted Boltzmann machinesC// the 27th International Conference on Machine Learning.HaifaIsraelICML-102010:807-814. [19] Sun L,Li W,Ning X,et al.Gradient-enhanced softmax for face recognition[J].IEICE Transactions on Information and Systems,2020E103.D(5):1185-1189 [20]任敬谋,李晓琴.基于非结节自动分类的二维卷积网络在肺结 节检测假阳性减少中的应用[J].北京生物医学工程,2020.39(4):389-397. Ren JMLi XO.The two-dimensional convolution network based on nonnodule automatic classification for reduction offalse positivity in pulmonary nodule detection[J].Beijing Biomedical Engineering,2020,39(4):389-397.
|