[1] Tham YC, Li X, Wong TY, et al. Global prevalence of glaucoma and projections of glaucoma burden through 2040: a systematic review and meta-analysis [J]. Ophthalmology, 2014, 121(11): 2081-2090. [2] Prencipe M, Perossini T, Brancoli G, et al. The photopic negative response (PhNR): measurement approaches and utility in glaucoma [J]. International Ophthalmology, 2020, 40(12): 3565-3576. [3] Eastlake K, Jayaram H, Luis J, et al. Strain specific responses in a microbead rat model of experimental glaucoma [J]. Current Eye Research, 2021, 46(3): 387-397. [4] John CM, Johnson E, William OC. Rat models for glaucoma research [J]. Progress in Brain Research, 2008, 173: 285-301.? [5] 魏文, 李运, 杨晓冉, 等. 慢性高眼压致兔视神经及视功能的损伤[J]. 中国老年学杂志, 2012, 32(3): 525-528. Wei W, Li Y, Yang XR, et al. The configuration and function of retinal damage during intraocular hypertension in rabbits[J]. Chinese Journal of Gerontology, 2012, 32(3): 525-528. [6] Wu X, Pang Y, Zhang Z, et al. Mitochondria-targeted antioxidant peptide SS-31 mediates neuroprotection in a rat experimental glaucoma model [J]. Acta Biochimica et Biophysica Sinica (Shanghai), 2019, 51(4): 411-421. [7] ElGohary AA, Elshazly LH. Photopic negative response in diagnosis of glaucoma: an experimental study in glaucomatous rabbit model [J]. International Journal of Ophthalmology, 2015, 8(3): 459-464. [8] Porciatti V. Electrophysiological assessment of retinal ganglion cell function[J]. Experimental Eye Research, 2015, 141: 164-70. [9] Whatham AR, Nguyen V, Zhu Y, et al. The value of clinical electrophysiology in the assessment of the eye and visual system in the era of advanced imaging [J]. Clinical and Experimental Optometry, 2014, 97(2): 99-115. [10] 党文婕, 张旭. 视觉电生理检查在青光眼早期诊断中作用的研究进展[J]. 中华眼科杂志, 2018, 54(11): 868-872. Dang WJ, Zhang X. Electrophysiology and early glaucoma diagnosis[J]. Chinese Journal of Ophthalmology, 2018, 54(11): 868-872. [11] 王霞, 潘英姿. 视觉诱发电位在青光眼视功能检测方面的研究进展[J]. 中华眼科杂志, 2020, 56(1): 61-65. Wang X, Pan YZ. Research progression of visual evoked potential in glaucomatous visual function evaluation[J]. Chinese Journal of Ophthalmology, 2020, 56(1): 61-65. [12] 张婷, 李龙, 宋凡. 青光眼发病机理—筛板变形研究进展[J]. 力学学报, 2019, 51(05): 1273-1284. Zhang T, Li L, Song F. Pathogenetic mechanisms of glaucoma-research process on the deformation of lamina cribrosa[J]. Chinese Journal of Theoretical and Applied Mechanics, 2019, 51(05): 1273-1284. [13] Peng F, Ma LP, Liu L, et al. Preliminary study on the blockade of axonal transport by activated astrocytes in optic nerve head under chronic ocular hypertension[J]. Journal of Mechanics in Medicine and Biology, 2019, 19(7): 1940040. [14] 马丽萍, 刘浏, 郭学谦, 刘志成, 钱秀清. 急性高眼压作用下视神经轴浆运输与视网膜光学功能的关系[J]. 中国医学物理学杂志, 2017, 34(10): 1035-1040. Ma LP, Liu L, Guo XQ, et al. Relationship between the axonal transport of the optic nerve and the optical function of the retina in acute high intraocular pressure[J]. Chinese Journal of Medical Physics, 2017, 34(10): 1035-1040. [15] Tezel G, Trinkaus K, Wax MB. Alterations in the morphology of lamina cribrosa pores in glaucomatous eyes[J]. British Journal of Ophthalmology, 2004, 88(2): 251-256. [16] Voorhees AP, Jan NJ, Austin ME, et al. Lamina cribrosa pore shape and size as predictors of neural tissue mechanical insult[J]. Investigative Ophthalmology and Visual Science, 2017, 58(12): 5336-5346. [17] Tan Li, Lin Li, Zhicheng Liu. Time course changes of the mechanical properties of the iris pigment epithelium in a rat chronic ocular hypertension model[J]. BioMed Research International, 2018, 2018: 4862309. [18] Yu H, Zhong H, Chen J, et al. Efficacy, drug sensitivity, and safety of a chronic ocular hypertension rat model established using a single intracameral injection of hydrogel into the anterior chamber[J]. Medical Science Monitor, 2020, 26: e925852. [19] Chen J, Sun J, Yu H, et al. Evaluation of the effectiveness of a chronic ocular hypertension mouse model induced by intracameral injection of cross-linking hydrogel[J]. Frontiers in Medicine (Lausanne), 2021, 8: 643402. [20] 郭学谦, 田蓓, 孙世杰, 等. 高眼压对青光眼视网膜功能的影响[J]. 医用生物力学, 2010, 25(3): 195-199. Guo XQ, Tian B, Sun SJ, et al. Effect of ocular hypertension on the function of retina of glaucoma[J]. Journal of Medical Biomechanics, 2010, 25(3): 195-199. [21] Hannon BG, Feola AJ, Gerberich BG, Read AT, Prausnitz MR, Ethier CR, Pardue MT. Using retinal function to define ischemic exclusion criteria for animal models of glaucoma. Experimental Eye Research. 2021,202:108354. [22] Cvenkel B, Sustar M, Perov?ek D. Ganglion cell loss in early glaucoma, as assessed by photopic negative response, pattern electroretinogram, and spectral-domain optical coherence tomography [J]. Documenta Ophthalmologica, 2017, 135(1): 17-28. [23] Fortune B, Burgoyne CF, Cull GA, et al. Structural and functional abnormalities of retinal ganglion cells measured in vivo at the onset of optic nerve head surface change in experimental glaucoma[J]. Investigative Ophthalmology and Visual Science, 2012, 53(7): 3939-3950. [24] Fortune B, Cull G, Reynaud J, et al. Relating retinal ganglion cell function and retinal nerve fiber layer (RNFL) retardance to progressive loss of RNFL thickness and optic nerve axons in experimental glaucoma[J]. Investigative Ophthalmology and Visual Science, 2015, 56(6): 3936-3944. [25] Liu HH, Flanagan JG. A mouse model of chronic ocular hypertension induced by circumlimbal suture[J]. Investigative Ophthalmology and Visual Science, 2017, 58(1): 353-361. [26] Tan B, MacLellan B, Mason E, et al. Structural, functional and blood perfusion changes in the rat retina associated with elevated intraocular pressure, measured simultaneously with a combined OCT+ERG system[J]. PLoS One, 2018, 13(3): e0193592. [27] Tan B, Gurdita A, Choh V, et al. Morphological and functional changes in the rat retina associated with 2 months of intermittent moderate intraocular pressure elevation[J]. Scientific Reports, 2018, 8(1): 7727.
|