[1] Worldometer. COVID-19 coronavirus pandemic [EB/OL]. [2021-01-19]. http://www.worldometers.info/coronavirus/#countries. [2] 白君, 周洁, 马婉玲, 等. 新型冠状病毒肺炎的初诊CT特征及与流感病毒性肺炎的鉴别诊断[J]. 中国中西医结合影像学杂志, 2020, 18(3):246-248. Bai J, Zhou J, Ma WL, et al. CT Features of COVID-19 at initial diagnosis and comparing with those of influenza virus pneumonia[J]. Chinese Imaging Journal of Integrated Traditional and Western Medicine, 2020, 18(3):246-248.? [3] 兰长利. 不同类型新型冠状病毒肺炎的肺脏超声的动态表现[J].中国医药导报,2021,18(10):151-154,158. Lan CL.Dynamic manifestations of lung ultrasound with different types of corona virus disease 2019[J]. China Medical Herald,2021,18(10):151-154,158. [4] 白欢,沈玲,袁旭,等.新型冠状病毒肺炎患者早期外周血实验室检查结果分析[J].现代检验医学杂志,2020,35(5):93-98. Bai H, Shen L, Yuan X, et al. Analysis of the characteristics of hematological parameters in the early stages of COVID-19[J]. Journal of Modern Laboratory Medicine, 2020,35(5):93-98. [5] 刘子砚,牛志杰,井沆,等. 新型冠状病毒肺炎患者347例实验室检测结果分析[J]. 现代医药卫生,2021,37(4):572-575. Liu ZY, Niu ZJ, Jing H, et al. Analysis of laboratory test results of 347 patients with COVID-19[J]. Journal of Modern Medicine & Health, 2021,37(4):572-575. [6] 曾雪元, 宫伟国, 胡云峰, 等. 基于决策树算法构建缺血性卒中复发的预测模型[J]. 吉林中医药, 2020, 40(4):437-440. Zeng XY, Gong WG, Hu YF, et al. A model for predicting ischemic stroke recurrence based on decision tree algorithm[J]. Jilin Journal of Chinese Medicine, 2020, 40(4):437-440.? [7] 杨青, 王国蓉, 江宾, 等. 基于决策树的肿瘤患者难免性压疮风险预测模型研究[J]. 护理学杂志, 2019, 34(13):4-7. Yang Q, Wang GR, Jiang B, et al. Study on risk prediction model of unavoidable pressure ulcers in cancer patients based on decision tree[J]. Journal of Nursing Science, 2019, 34(13):4-7. [8] 于大海, 李金, 罗艳虹, 等. 随机森林模型和决策树模型在肝硬化上消化道出血预后中的应用[J]. 中国卫生统计, 2019, 36(2):162-166. Yu DH, Li J, Luo YH. Application of random forest and decision trees in the prognosis of upper gastrointestinal bleeding in patients with liver cirrhosis[J]. Chinese Journal of Health Statistics, 2019, 36(2):162-166. [9] 吴懿婷.决策树和随机森林方法在管理决策中的应用[J].电子制作, 2018,(16):47-48,100. Wu YT. Application of decision tree and random forest method in management decision[J]. Practical Electronics, 2018,(16):47-48,100.? [10] 陈卓, 吕娜. 基于随机森林和XGBoost的网络入侵检测模型[J]. 信号处理, 2020, 36(7):1055-1064. Chen Z, LYu N. Network intrusion detection model based on random forest and XGBoost[J]. Journal of Signal Processing, 2020, 36(7):1055-1064. DOI:10.16798/j.issn.1003-0530.2020.07.004. [11] 谷鸿秋, 王春娟, 李子孝, 等. 基于Logistic回归与XGBoost构建缺血性卒中院内复发风险预测模型的初步比较研究[J]. 中国卒中杂志, 2020, 15(6):587-594. Gu HQ, Wang CJ, Li ZX, et al. Comparison of prediction models for in-hospital stroke recurrence in patients with ischemic stroke based on logistic regression and XGBoost methods[J]. Chinese Journal of Stroke, 2020, 15(6):587-594. [12] 袁宏丽,范恒全,马彦华.新型冠状病毒肺炎与其他常见病毒性肺炎的CT鉴别诊断[J]. 解放军医药杂志,2020,32(4):5-8. Yuan HL, Fan HQ, Ma YH. CT differential diagnosis between novel coronavirus and other common viral pneumonia[J]. Medical & Pharmaceutical Journal of Chinese People's Liberation Army, 2020,32(4):5-8. [13] 蒋荣猛. 新型冠状病毒肺炎诊疗方案(试行第七版)解读[J]. 北京医学, 2020, 42(4):334-336. Jiang RM. “New coronavirus pneumonia treatment plan(trial seventh edition)”interpretation[J]. Beijing Medical Journal, 2020, 42(4):334-336. [14]吴敏昱, 李敏, 朱芸仙, 等. 新型冠状病毒肺炎与甲型H1N1流感肺炎CT特征比较[J]. 中国医学影像学杂志, 2020, 28(11):802-805.? Wu MY, Li M, Zhu YX, et al. CT features of COVID-19 and H1N1 influenza pneumonia: a comparative study[J]. Chinese Journal of Medical Imaging, 2020, 28(11):802-805. [15] 高瞻,陈文,姜鹏,等.基于XGBoost的新冠肺炎智能检测系统实现[J].中国数字医学, 2020,15(11):123-127. Gao Z, Chen W, Jiang P, et al. Realization of the intelligent detection system for COVID-19 based on XGBoost[J]. China Digital Medicine, 2020, 15(11):123-127.
|