设为首页 |  加入收藏
首页首页 期刊简介 消息通知 编委会 电子期刊 投稿须知 广告合作 联系我们
基于肩部肌肉表面肌电的下肢外骨骼控制系统

Lower limb exoskeleton control system based on shoulder muscle surface electromyography

作者: 朱鹏霖  苏宗信  唐家曦  武彦言  于诗静  唐鹤云 
单位:徐州医科大学医学影像学院(江苏徐州 221004)&nbsp;<br />作者简介:唐鹤云,副教授。E-mail:8652172@qq.com。
关键词: 表面肌电;外骨骼;运动意图识别;康复机器人;三点步 
分类号:R318.04&nbsp;
出版年·卷·期(页码):2021·40·5(510-515)
摘要:

目的 设计一种基于肩关节屈曲、外展运动主要肌肉表面肌电信号的下肢可穿戴外骨骼控制系统,解决基于下肢肌肉表面肌电信号控制系统信号提取识别困难的问题。方法首先采用表面肌电信号传感器采集患者的三角肌前束、中束以及斜方肌肌电信号。其次通过蓝牙等无线通信技术将信号实时传输至控制板。再次,控制板通过分析采集信号数据特征判断患者运动状态和运动意图,控制大腿相关关节处舵机根据三维步态采集系统得到患者特殊步态数据提供相关扭矩完成运动。最后,受试者穿戴配有控制系统的外骨骼康复机器人后进行3组独立重复实验,验证机器人控制系统实时提取识别肌电信号、控制舵机运作的效果。结果 肩关节表面肌肉位置浅表、肌腹面积大且拮抗肌信号干扰小,表面肌电采集容易,控制板对运动意图的识别难度低,平均识别成功率有89.6%,验证了下肢外骨骼康复机器人控制系统有效控制舵机辅助人体完成康复训练的可行性。结论 基于肩部肌肉表面肌电信号的下肢外骨骼控制系统降低了信号提取识别难度,下肢外骨骼助行机器人通过提取并识别肩部表面肌电信号进行运动具有可行性。

Objective To design a lower extremity wearable exoskeleton control system based on the surface EMG signals of main muscles of shoulder flexion and abduction.,and to solve the problem of difficult signal extraction and recognition based on lower limb muscle surface EMG signal control system. Methods Firstly, the electrical signals of anterior, middle and trapezius deltoid were collected by surface EMG sensor. Secondly, the signal was transmitted to the control board in real time through Bluetooth and other wireless communication technologies. Thirdly, the control board judged the patient's motion state and motion intention by analyzing the characteristics of the collected signal data, controlled the steering gear at the relevant joints of the thigh, obtained the patient's special gait data according to the three-dimensional gait acquisition system, and provided relevant torque to complete the motion. Finally, after wearing the exoskeleton rehabilitation robot equipped with the control system, the subjects carried out three groups of independent repeated experiments to verify the effect of the robot control system on extracting and identifying EMG signals in real time and controlling the operation of the steering gear. Results The muscle position on the surface of shoulder joint was shallow, the area of muscle abdomen was large, and the interference of antagonistic muscle signal was small. The surface EMG acquisition was easy, and the control board had low difficulty in identifying movement intention. The average recognition success rate was 89.6%. It was verified that the control system of lower limb exoskeleton rehabilitation robot could effectively control the steering gear to assist the human body to complete rehabilitation training. Conclusions The design of lower limb exoskeleton control system based on shoulder muscle surface EMG signal reduces the difficulty of signal extraction and recognition. It is feasible for lower limb exoskeleton walking aid robot to move by extracting and recognizing shoulder surface EMG signal.

参考文献:

[1] 张秀, 张宇斐, 焦志伟. 康复机器人研究进展[J]. 医疗卫生装备, 2020, 41(4):97-102.
Zhang X,Zhang YF,Jiao ZW.Research progress of rehabilitation robot[J].Chinese Medical Equipment Journal,2020, 41(4):97-102.
[2] ?第二次全国残疾人抽样调查领导小组,中华人民共和国国家统计局.2006年第二次全国残疾人抽样调查主要数据公报[J].中国康复理论与实践, 2006, 12(12):1013-1013.
[3] Mehrholz J,Platz T,Kugler J,et al .Electromechanical and robot-assisted arm training for improving arm function and activities ofdaily living after stroke[ J ].Stroke , 2008,40( 4):CD006876.
[4] Chen F,,Yu Y,Ge Y, et al. Basic research on power assist walk ing leg usingforce/velocity control strategies[C]. IEEE International Conference onInformat ion Acqu is ition. Seogwipo-si, Korea :IEEE,2007.
[5] Esquenazi A,Talaty M,Packel A,et al. The Rewalk powered exoskeleton torestore ambu latory function to individuals with thoracic-level motor-completesp in al cord injury [J] . American Journal of Physic al Medicine &Rehabilitation,2012,91 (11): 911-921.
[6] 许祥, 侯丽雅, 黄新燕, 等. 基于外骨骼的可穿戴式上肢康复机器人设计与研究[J]. 机器人, 2014, 36(2):147-155.
Xu X, Hou LY, Huang XY, et al. Design and Research of a Wearable Robot for Upper Limbs Rehabilitation Based on Exoskeleton [J]. Robot, 2014, 36 (2): 147-155.
[7] 明东, 蒋晟龙, 王忠鹏,等. 基于人机信息交互的助行外骨骼机器人技术进展[J]. 自动化学报, 2017, 43(7):1089-1100.
Ming D, Jiang SL, Wang ZP, et al. Review of walk assistant exoskeleton technology:human—machine interaction [J]. Acta Automatica Sinica, 2017, 43 (7): 1089-1100
[8] 邝亚云, 王黎明, 王佳琪. 基于快速独立分量分析的脑电信号去噪方法研究[J]. 国外电子测量技术, 2018, 37(11):1-4.
Kuang YY, Wang LM, Wang JQ. Research on denoising method of EEG signal based on fast independent component analysis [J]. Foreign electronic measurement technology, 2018, 37 (11): 1-4.
[9] 王洪斌, 李程, 王跃灵,等. 基于Arduino和蓝牙技术的六足机器人控制系统设计[J]. 黑龙江大学自然科学学报, 2015,32(4):117-121.
Wang HB, Li C, Wang YL, et al. Design of hexapod robot control system based on Arduino and Bluetooth module [J]. Journal of Natural Science of Heilongjiang University, 2015,32(4): 117-121.
[10] 雷杰宇. 人体运动数据采集与分析[D].杭州:浙江大学,2015.
Lei JY. Data acquisition and analysis of human motion [D]. Hangzhou:Zhejiang University, 2015.
[11] 吴文竹, 唐俊铨. 基于步态检测算法的避障装置研制[J]. 医疗卫生装备, 2017,38(2):1-5.
Wu WZ, Tang JQ. Development of obstacle avoidance device based on gait detection algorithm [J]. Chinese Medical Equipment Journal, 2017, 38 (2): 1-5
[12] 杨红. 基于单片机的电机控制系统研究[J]. 煤炭技术, 2012,31(9):48-49.
Yang H. Study of Motor Control System Based on Microcontroller [J]. Coal technology, 2012, 31 (9): 48-49.
[13] 吕楠, 尚清, 马彩云,等.康复机器人对痉挛型脑性瘫痪患儿的康复效果[J]. 中国实用神经疾病杂志, 2017, 20(7):49-51.
[14] 王启宁, 郑恩昊, 陈保君,等. 面向人机融合的智能动力下肢假肢研究现状与挑战[J]. 自动化学报, 2016,42(12):1780-1793.
Wang QN, Zheng EH, Chen BJ, et al. Recent Progress and Challenges of Robotic Lower-limb Prostheses for Human-robot Integration ?[J]. Acta Automatica Sinica, 2016,42(12): 1780-1793.
[15] Huang H, ?Zhang F, ?Hargrove L, et al. Continuous locomotion-mode identification for prosthetic legs based on neuromuscular–mechanical fusion[J]. IEEE Transactions on Bio-medical Engineering, 2011, 58(10):2867-2875.
[16] Miller JD , ?Beazer MS , ?Hahn ME . Myoelectric walking mode classification for transtibial amputees[J]. IEEE Transactions on Biomedical Engineering, 2013, 60(10):2745-2750.

服务与反馈:
文章下载】【加入收藏
提示:您还未登录,请登录!点此登录
 
友情链接  
地址:北京安定门外安贞医院内北京生物医学工程编辑部
电话:010-64456508  传真:010-64456661
电子邮箱:llbl910219@126.com