[1] Wu S, Wu B, Liu M, et al. Stroke in China: advances and challenges in epidemiology, prevention, and management[J]. The Lancet Neurology, 2019,18(4): 394-405. [2] Pega F, Náfrádi B, Momen NC, et al. Global, regional, and national burdens of ischemic heart disease and stroke attributable to exposure to long working hours for 194 countries, 2000-2016: a systematic analysis from the WHO/ILO Joint Estimates of the Work-related Burden of Disease and Injury[J]. Environment International, 2021,154: 106595. [3] Bos D, Arshi B, van den Bouwhuijsen Q, et al. Atherosclerotic Carotid Plaque Composition and Incident Stroke and Coronary Events[J]. Journal of the American College of Cardiology, 2021, 77(11):1426-1435. [4] 王拥军,李子孝,谷鸿秋,等.中国卒中报告2019(中文版)(1)[J].中国卒中杂志,2020,15(10):1037-1043. [5] Sun Y, Shi YM, Xu P. The clinical research progress of vertebral artery dominance and posterior circulation ischemic stroke[J]. Cerebrovascular Diseases (Basel, Switzerland), 2022, 51(5): 553-556.? [6] Debrey SM, Yu H, Lynch JK, et al. Diagnostic accuracy of magnetic resonance angiography for internal carotid artery disease: a systematic review and meta-analysis[J]. Stroke, 2008, 39(8):2237-2248.? [7] Munio M, Darcourt J, Gollion C, et al. Large artery intracranial stenosis in young adults with ischaemic stroke[J]. Revue Neurologique, 2021,178(3):206-212.? [8] Villablanca JP, Nael K, Habibi R, et al. 3 T contrast-enhanced magnetic resonance angiography for evaluation of the intracranial arteries: comparison with time-of-flight magnetic resonance angiography and multislice computed tomography angiography[J]. Investigative Radiology, 2006,41(11): 799-805. [9] Josephson CB, White PM, Krishan A, et al. Computed tomography angiography or magnetic resonance angiography for detection of intracranial vascular malformations in patients with intracerebral haemorrhage[J]. The Cochrane Database of Systematic Reviews, 2014(9): CD009372. [10] Wang X, Benson J, Jagadeesan B, et al. Giant cerebral aneurysms: comparing CTA, MRA, and digital subtraction angiography assessments[J]. Journal of Neuroimaging, 2020,30(3): 335-341.? [11] 张琨.核磁共振血管成像与螺旋CT血管成像技术诊断脑血管疾病的价值分析[J].中国医疗器械信息,2020,26(13): 65-66. Zhang K. Analysis of the value of nuclear magnetic resonance angiography and spiral CT angiography in the diagnosis of cerebrovascular diseases[J]. China Medical Device Information,2020,26(13):65-66. [12] 李继凡,陈硕,章强,等. 基于U?Net神经网络的多模态MR颈动脉血管成像的分割方法研究[J].中华放射学杂志, 2019,53(12):1091-1095. Li JF, Chen S, Zhang Q, et al. The study on the segmentation of carotid vessel wall in multicontrast MR images based on U?Net neural network[J]. Chinese Journal of Radiology,2019,53(12):1091-1095. [13] Settecase F, Rayz VL. Advanced vascular imaging techniques[J]. Handbook of Clinical Neurology, 2021,176: 81-105.? [14] Osmanodja F, Scheitz JF, Fiebach JB, et al. Can intracranial time-of-flight-MR angiography predict extracranial carotid artery stenosis?[J]. Journal of Neurology, 2021,269:2743-2749.? [15] Wilson DL, Noble JA. Segmentation of cerebral vessels and aneurysms from MR angiography data[C]// International Conference on Information Processing in Medical Imaging. Berlin: Springer, Berlin, Heidelberg, 1997: 423-428. [16] Xiao R, Ding H, Zhai F, et al. Cerebrovascular segmentation of TOF-MRA based on seed point detection and multiple-feature fusion[J]. Computerized Medical Imaging and Graphics, 2018, 69:1-8.? [17] Ronneberger O, Fischer P, Brox T. U-net: convolutional networks for biomedical image segmentation[C]//International Conference on Medical Image Computing and Computer-Assisted Intervention. Berlin: Springer, Cham, 2015: 234-241.? [18] Cicek ?, Ahmed Abdulkadir, Lienkamp SS, et al. 3D u-net: learning dense volumetric segmentation from sparse annotation[C]//International Conference on Medical Image Computing and Computer-Assisted Intervention. Berlin: Springer, Cham, 2016: 424–432.? [19] Litjens G, Kooi T, Bejnordi BE, et al. A survey on deep learning in medical image analysis[J]. Medical Image Analysis, 2017,42: 60?88.? [20] Norman B, Pedoia V, Majumdar S. Use of 2D U?Net convolutional neural networks for automated cartilage and meniscus segmentation of knee MR imaging data to determine relaxometry and morphometry[J]. Radiology, 2018, 288(1): 177?185. [21] Seo H, Badiei Khuzani M, Vasudevan V, et al. Machine learning techniques for biomedical image segmentation: An overview of technical aspects and introduction to state-of-art applications[J]. Medical Physics, 2020,47(5): e148-e167.? [22] Phellan R, Peixinho A, Falc?o A, et al. Vascular segmentation in TOF MRA images of the brain using a deep convolutional neural network[C]// Intravascular Imaging and Computer Assisted Stenting, and Large-Scale Annotation of Biomedical Data and Expert Label Synthesis. Berlin: Springer, Cham: 2017: 39-46.? [23] Livne M, Rieger J, Aydin OU, et al. A U-net deep learning framework for high performance vessel segmentation in patients with cerebrovascular disease[J]. Frontiers in Neuroscience, 2019, 13: 97.? [24] Sanches P, Meyer C, Vigon V, et al. Cerebrovascular network segmentation of MRA images with deep learning[C]// 2019 IEEE 16th International Symposium on Biomedical Imaging(ISBI 2019). Venice, Italy: IEEE Press, 2019: 768-771. [25] Zhu C, Wang X, Teng Z, et al. Cascaded residual U-net for fully automatic segmentation of 3D carotid artery in high-resolution multi-contrast MR images[J]. Physics in Medicine and Biology, 2021,66(4): 045033. [26] Han Y, Guan M, Zhu Z, et al. Assessment of longitudinal distribution of subclinical atherosclerosis in femoral arteries by three-dimensional cardiovascular magnetic resonance vessel wall imaging[J]. Journal of Cardiovascular Magnetic Resonance, 2018, 20: 60.? [27] He K, Zhang X, Ren S, et al. Deep residual learning for image recognition[C]// 2016 IEEE Conference on Computer Vision and Pattern Recognition(CVPR). Las Vegas, NV, USA: IEEE Press, 2016: 770-778. [28] Hu J, Shen L, Sun G, et al. Squeeze-and-excitation networks[C]// 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Salt Lake City, UT, USA: IEEE Press, 2018: 7132-7141.?
|