设为首页 |  加入收藏
首页首页 期刊简介 消息通知 编委会 电子期刊 投稿须知 广告合作 联系我们
预防股骨头坏死塌陷的内置物设计及有限元分析

Design of implant and finite element analysis for preventing collapse in osteonecrosis of the femoral head

作者: 毛瑞  郝鹏  黄鑫  罗艳 
单位:四川省医学科学院·四川省人民医院(成都 610072) ,北京航空航天大学生物与医学工程学院(北京 100191) ,电子科技大学医学院(成都 610054)<br />通讯作者:郝鹏。E-mail:hhaopeng@163.com
关键词: 股骨头坏死;股骨头塌陷;内置物设计;生物力学;有限元分析 
分类号:R318.01&nbsp;
出版年·卷·期(页码):2022·41·6(558-564)
摘要:

目的 基于目前股骨头植入装置对股骨头支撑不足的问题,设计一种帽形股骨头内置物并运用有限元分析探讨植入后对股骨应力分布的影响,评估其在临床应用的可能性。方法 股骨头内置物由弧形帽和柱形短柄组成,弧形帽采用多孔材料;选取健康成人股骨为研究对象,根据CT扫描图像建立正常股骨头模型和植入术后远期有限元模型;根据骨密度分区设置材料属性,施加双足站立生理载荷条件,计算分析植入内置物前后股骨头应力分布。结果 术后内置物弧形帽下方骨组织节点应力均值低于术前模型,差异具有统计学意义;股骨颈部应力峰值及接触内置物柄部末端的区域应力水平增加,股骨头其他结构的应力无显著变化。结论 帽形内置物植入后能够降低股骨头应力水平并形成稳固支撑结构,有希望应用于股骨头坏死早期的临床治疗。

Objective To provide sufficient mechanical support for the femoral head, a cap-shaped titanium alloy implant was designed and finite element analysis was applied to investigate the biomechanical behaviour in the treatment for osteonecrosis of the femoral head (ONFH). Methods The implant consisted of a porous cap and a stem. Based on CT imaging data of a healthy volunteer, three-dimensional femur models before and after implantation were developed. Material properties were assigned by bone density and the stress of the femoral head was calculated in weight bearing. Results After the implantation, Von mises stress of the femoral head underside the porous cap decreased significantly, peak stress of femoral neck and the region around the stem increased, other region of the femur remained unchanged; Conclusions The cap-shaped implant is conducive to reduce the stress inside the femoral head and provide sufficient biomechanical support which might be a promising substitute for the treatment of early stage ONFH.

参考文献:

[1] Lutz A, Nackenhorst U, von Lewinski G, et al. Numerical studies on alternative therapies for femoral head necrosis: a finite element approach and clinical experience[J]. Biomechanics and Modeling in Mechanobiology, 2011, 10: 627-640.
[2] Cohen-Rosenblum A, Cui Q. Osteonecrosis of the femoral head[J]. Orthopedic Clinics of North America, 2019, 50: 139-149.
[3] 庞智晖, 何伟, 欧志学, 等. 钽棒治疗早期股骨头坏死失败原因分析与对策[J]. 广东医学, 2012, 33(1): 88-91.
[4] 朱刚, 张立贵, 郑重, 等. 股骨头坏死区钽棒置入前后应力分布的三维有限元分析[J]. 中国组织工程研究, 2016, 20(26): 3883-3889.
Zhu G, Zhang LG, Zheng Z, et al. Three-dimensional finite element analysis of stress distribution in necrotic femoral head before and after tantalum rod implantation[J]. Chinese Journal of Tissue Engineering Research, 2016, 20(26): 3883-3889.
[5] Shi J, Chen J, Wu J, et al. Evaluation of the 3D finite element method using a tantalum rod for osteonecrosis of the femoral head [J]. Medical Science Monitor: International Medical Journal of Experimental and Clinical Research, 2014, 20: 2556-2564.
[6] 厉驹, 杨予, 童培建. 多孔钽棒植入股骨头塌陷风险与生物力学支撑效果分析[J]. 中国骨与关节损伤杂志, 2017, 32(2): 129-132.
Li J, Yang Y, Tong PJ. Biomechanical bracing effect and collapse risk analysis of porous tantalum rod implantation in femoral head[J]. Chinese Journal of Bone and Joint Injury, 2017, 32(2): 129-132.
[7] Lin D, Wang L, Yu Z, et al. Lantern-shaped screw loaded with autologous bone for treating osteonecrosis of the femoral head[J]. BMC Musculoskeletal Disorders, 2018, 19: 318.
[8] Yu X, Jiang W, Pan Q, et al. Umbrella-shaped, memory alloy femoral head support device for treatment of avascular osteonecrosis of the femoral head[J]. International Orthopaedics, 2013, 37(7): 1225-1232.
[9] Yi W, Tian Q, Dai Z, et al. Mechanical behaviour of umbrella-shaped, Ni-Ti memory alloy femoral head support device during implant operation: a finite element analysis study[J]. PloS One, 2014, 9(6): e100765.
[10] Bian W, Li D, Lian Q, et al. Design and fabrication of a novel porous implant with pre-set channels based on ceramic stereolithography for vascular implantation[J]. Biofabrication, 2011, 3(3): 034103.
[11] Wang R, Gao Y, Yang S, et al. Titanium alloy cage implantation for the treatment of ischemic necrosis of femoral head in dogs[J]. Journal of Huazhong University of Science and Technology(Medical Science), 2008, 28(2): 163-166.
[12] Liu L, Wang S, Liu J, et al. Architectural design of Ti6Al4V scaffold controls the osteogenic volume and application area of the scaffold[J]. Journal of Materials Research and Technology, 2020, 9(6): 15849-15861.
[13] 莫诒向, 邓羽平, 黄文华, 等. 腓骨高位截骨术对胫骨平台的生物力学分析[J]. 中国医学物理学杂志, 2020, 37(5): 644-648.
Mo YX, Deng YP, Huang WH, et al. Effects of proximal fibular osteotomy on tibial plateau: a biomechanical analysis[J]. Chinese Journal of Medical Physics, 2020, 37(5): 644-648.
[14] Lotz JC, Gerhart TN, Hayes WC. Mechanical properties of metaphyseal bone in the proximal femur[J]. Journal of Biomechanics, 1991, 24(5): 317-329.
[15] 李孝林, 吕志鹏, 刘迎军. 股骨头坏死有限元模型的建立[J]. 中国组织工程研究与临床康复, 2011, 15(30): 5522-5525.
Li XL, Lyu ZP, Liu YJ. Constructing a finite element model of osteonecrosis of the femoral head[J]. Journal of Clinical Rehabilitative Tissue Engineering Research, 2011, 15(30): 5522-5525.
[16] 胡元斌, 周岳来, 李永顺, ?等. 有限元分析髓芯减压并同种异体植骨治疗股骨头缺血性坏死的生物力学改变[J]. 中国医学物理学杂志, 2020, 37(2): 243-248.
Hu YB, Zhou YL, Li YS, et al. Biomechanical changes of avascular necrosis of the femoral head treated by core decompression and allogeneic bone grafting: a finite element analysis[J]. Chinese Journal of Medical Physics, 2020, 37(2): 243-248.
[17] 张怡元, 冯尔宥, 林飞太, 等. 以三维有限元分析多孔钽块植入治疗股骨头缺血性坏死的生物力学改变[J]. 生物骨科材料与临床研究, 2012, 9(1): 4-7.
Zhang YY, Feng EY, Lin FT, et al. Biomechanical study and three-dimension finite element analysis on the treatment of the ischemic necrosis of the femoral head using piece of tantalum[J]. Orthopaedic Biomechanics Materials and Clinical Study, 2012, 9(1): 4-7.
[18] Floerkemeier T, Lutz A, Nackenhorst U, et al. Core decompression and osteonecrosis intervention rod in osteonecrosis of the femoral head: clinical outcome and finite element analysis[J]. International Orthopaedics, 2011, 35(10): 1461-1466.
[19] Tran TN, Warwas S, Haversath M, et al. Experimental and computational studies on the femoral fracture risk for advanced core decompression[J]. Clinical Biomechanics(Bristol, Avon), 2014, 29(4): 412-417.
[20] Taylor M. Finite element analysis of the resurfaced femoral head[J]. Proceedings of the Institution of Mechanical Engineers Part H: Journal of Engineering in Medicine, 2006, 220(2): 289-297.
[21] 吴伟. 股骨颈骨折断端骨缺损内固定术后股骨近端生物力学有限元分析[D]. 武汉: 武汉大学,2015: 7-12.
Wu W. The biomechanical finite element analysis of proximal femur after internal fixation of femoral neck fracture with bone defect[D]. Wuhan: Wuhan University, 2015:7-12.
[22] Brown TD, Pedersen DR, Baker KJ, et al. Mechanical consequences of core drilling and bone-grafting on osteonecrosis of the femoral head[J]. The Journal of Bone and Joint Surgery, 1993, 75(9): 1358-1367.
[23] Trabelsi N, Yosibash Z, Wutte C, et al. Patient-specific finite element analysis of the human femur--a double-blinded biomechanical validation[J]. Journal of Biomechanics, 2011, 44(9): 1666-1672.
[24] Ueo T, Tsutsumi S, Yamamuro T, et al. Biomechanical aspects of the development of aseptic necrosis of the femoral head[J]. Archives of Orthopaedic and Traumatic Surgery, 1985, 104(3): 145-149.
[25] Tanzer M, Bobyn JD, Krygier JJ, et al. Histopathologic retrieval analysis of clinically failed porous tantalum osteonecrosis implants[J]. The Journal of Bone and Joint Surgery, 2008, 90(6): 1282-1289.
[26] 邓俊才, 王跃, 吕波,等. 一个股骨头塌陷严重程度评价指标的探讨[J]. 中华临床医师杂志(电子版), 2012, 6(6): 1570-1571.
[27] Cilla M, Checa S, Preininger B, et al. Femoral head necrosis: a finite element analysis of common and novel surgical techniques[J]. Clinical Biomechanics (Bristol, Avon), 2017, 48: 49-56.
[28] Moya-Angeler J, Gianakos AL, Villa JC, et al. Current concepts on osteonecrosis of the femoral head[J]. World Journal of Orthopedics, 2015, 6(8): 590-601.

服务与反馈:
文章下载】【加入收藏
提示:您还未登录,请登录!点此登录
 
友情链接  
地址:北京安定门外安贞医院内北京生物医学工程编辑部
电话:010-64456508  传真:010-64456661
电子邮箱:llbl910219@126.com