[1] Nissen SE, Yock P. Intravascular ultrasoundnovel pathophysiological insights and current clinical applications [J]. Circulation, 2001, 103: 604-16. [2] Wang X, Matsumura M, Mintz GS, et al. In vivo calcium detection by comparing optical coherence tomography, intravascular ultrasound, and angiography [J]. JACC Cardiovasc Imaging, 2017, 10(8): 869-79. [3] 王伟民, 霍勇, 葛均波. 冠状动脉钙化病变诊治中国专家共识(2021版)[J]. 中国介入心脏病学杂志, 2021,29(5):251-259. [4] Huang C, Wang J, Xie Q, et al. Analysis methods of coronary artery intravascular images: A review [J]. Neurocomputing, 2022 ,489: 27-39. [5] Jodas DS, Pereira AS, Tavares JMR. Automatic segmentation of the lumen region in intravascular images of the coronary artery [J]. Medical image analysis, 2017, 40: 60-79. [6] Hammouche A, Cloutier G, Tardif JC, et al. Automatic IVUS lumen segmentation using a 3D adaptive helix model [J]. Computers in Biology and Medicine, 2019, 107: 58-72. [7] Ronneberger O, Fischer P, Brox T. U-net: Convolutional networks for biomedical image segmentation[C]//International Conference on Medical image computing and computer-assisted intervention. Singapore, Singapore: Springer, Cham, 2015: 234-241. [8] Yang J, Faraji M, Basu A. Robust segmentation of arterial walls in intravascular ultrasound images using Dual Path U-Net [J]. Ultrasonics, 2019, 96: 24-33. [9] Vaswani A, Shazeer N, Parmar N, et al. Attention is all you need [J]. Advances in neural information processing systems, 2017, 30: 5998-6008. [10] Dosovitskiy A, Beyer L, Kolesnikov A, et al. An image is worth 16x16 words: Transformers for image recognition at scale [EB/OL]. arXiv .2020-10-22[2021-06-03]. https://doi.org/10.48550/arXiv.2010.11929. [11] Chen J, Lu Y, Yu Q, et al. Transunet: Transformers make strong encoders for medical image segmentation [EB/OL]. arXiv.2021-02-08[2021-12-09].https://doi.org/10.48550/arXiv.2102.04306 [12] Ioffe S, Szegedy C. Batch normalization: Accelerating deep network training by reducing internal covariate shift[C]//International conference on machine learning. Lille, France: PMLR, 2015: 448-456. [13] Glorot X, Bordes A, Bengio Y. Deep sparse rectifier neural networks[C]//Proceedings of the fourteenth international conference on artificial intelligence and statistics. Ft. Lauderdale, FL, USA: JMLR Workshop and Conference Proceedings, 2011: 315-323. [14] Lin A, Chen B, Xu J, et al. Ds-transunet: Dual swin transformer u-net for medical image segmentation [J]. IEEE Transactions on Instrumentation and Measurement, 2022,71:4005615. [15] Yan X, Tang H, Sun S, et al. After-unet: Axial fusion transformer unet for medical image segmentation[C]//Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision. Waikoloa, HI, USA: IEEE press, 2022: 3971-3981. [16] Liu Z, Lin Y, Cao Y, et al. Swin transformer: Hierarchical vision transformer using shifted windows[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision. Montreal, QC, Canada: IEEE press, 2021: 10012-10022. [17] 汪琳琳, 施俊, 韩振奇,等. 结合卷积神经网络与图卷积网络的乳腺癌病理图像分类研究[J]. 北京生物医学工程, 2021, 40(2): 130-138. Wang LL,Shi J,Han ZQ,et al. Research on breast cancer pathological image classification combined with convolution neural network and graph convolution network[J]. Beijing Biomedical Engineering, 2021, 40(2): 130-138. [18] Eigen D, Fergus R. Predicting depth, surface normals and semantic labels with a common multi-scale convolutional architecture[C]//Proceedings of the IEEE international conference on computer vision. Washington, DC, USA: IEEE press, 2015: 2650-2658. [19] Shen W, Zhou M, Yang F, et al. Multi-scale convolutional neural networks for lung nodule classification[C]//International conference on information processing in medical imaging. Sabhal Mor Ostaig, Isle of Skye, United Kingdom: Springer, Cham, 2015: 588-599. [20] Madhavan MV, Tarigopula M, Mintz GS, et al. Coronary artery calcification: pathogenesis and prognostic implications [J]. Journal of The American College of Cardiology, 2014, 63(17): 1703-1714. [21] Wu H, Chen S, Chen G, et al. FAT-Net: Feature adaptive transformers for automated skin lesion segmentation [J]. Medical Image Analysis, 2022, 76: 102327.
|