设为首页 |  加入收藏
首页首页 期刊简介 消息通知 编委会 电子期刊 投稿须知 广告合作 联系我们
氧化铁纳米颗粒对静止状态白血病细胞的作用研究

The effects of iron oxide nanoparticles on quiescent leukemia cells

作者: 李宛清  张雪  温涛  刘健  孟洁  许海燕 
单位:中国医学科学院基础医学研究所,北京协和医学院基础学院(北京 &nbsp;100005)<br />通信作者:许海燕,E-mail:xuhy@pumc.edu.cn;孟洁,E-mail:mengjie@ibms.pumc.edu.cn
关键词: 氧化铁纳米颗粒;白血病细胞;静止;氧化应激;凋亡 
分类号:&nbsp;R318.04
出版年·卷·期(页码):2023·42·1(52-56)
摘要:

目的 研究二巯基丁二酸修饰的四氧化三铁纳米颗粒(DMSA-Fe3O4 NPs)对静止状态白血病细胞的作用及机制。方法 利用透射电镜观察纳米颗粒形貌;用低血清培养基(0.5% FBS)诱导细胞进入静止状态,采用普鲁士蓝染色法与邻二氮菲铁定量法检测DMSA-Fe3O4 NPs进入Kasumi-1细胞的情况;通过乳酸脱氢酶法、细胞氧化应激荧光探针和凋亡检测试剂分析 DMSA-Fe3O4 NPs对Kasumi-1细胞的作用。结果 DMSA-Fe3O4 NPs可进入静止状态的Kasumi-1细胞,细胞内铁含量与DMSA-Fe3O4 NPs浓度成正比;与此同时,细胞活性降低,细胞内ROS与脂质过氧化物水平升高,细胞发生凋亡。正常培养的Kasumi-1细胞活性和氧化应激水平不受DMSA-Fe3O4 NPs的影响。结论 DMSA-Fe3O4 NPs可进入静止状态的白血病细胞并引起细胞凋亡。

Objective To investigate the effect of dimercaptosuccinic acid modified ferric oxide nanoparticles (DMSA-Fe3O4 NPs) on quiescent acute myeloid leukemia cell line (Kasumi-1). Methods The morphology of DMSA-Fe3O4 NPs was observed by transmission electron microscopy. The low serum containing medium (0.5% FBS) was applied to induce Kasumi-1 cells to the quiescent state. The cellular uptake of DMSA-Fe3O4 NPs was analyzed by Prussian blue staining and phenanthroline spectrophotometric analysis. The release of lactate dehydrogenase, reactive oxidative species and apoptosis of Kasumi-1 treated with DMSA-Fe3O4 NPs at different concentrations were examined. Results The DMSA-Fe3O4 NPs entered the quiescent Kasumi-1 cells and the content of intracellular iron increased in a nanoparticles dose dependent manner. The viability of the quiescent Kasumi-1 cells was significant decreased and the intracellular ROS and lipid peroxide were increased as well. The Kasumi-1 cells cultured with the complete culture medium (10% FBS) was not affected by DMSA-Fe3O4 NPs. Conclusions DMSA-Fe3O4 NPs could preferably enter the quiescent Kasumi-1 cells, which resulted in the upregulation of intracellular oxidative stress and cell apoptosis.

参考文献:

[ 1 ] Yadwade R, Kirtiwar S, Ankamwar B. A Review on Green Synthesis and Applications of Iron Oxide Nanoparticles[J]. Journal of Nanoscience and Nanotechnology, 2021, 21(12): 5812-5834.
[ 2 ] Zhi DF, Yang T, Yang J, et al. Targeting strategies for superparamagnetic iron oxide nanoparticles in cancer therapy[J]. Acta Biomaterialia, 2020, 102: 13-34.?
[ 3 ] Jeon M, Halbert MV, Stephen ZR, et al. Iron oxide nanoparticles as T(1) contrast agents for magnetic resonance imaging: fundamentals, challenges, applications, and prospectives[J]. Advanced Materials, 2021, 33(23): e1906539.
[ 4 ] Vangijzegem T, Stanicki D, Laurent S. Magnetic iron oxide nanoparticles for drug delivery: applications and characteristics[J]. Expert Opinion on Drug Delivery, 2019, 16(1): 69-78.
[ 5 ] Zhang W, Yu ZL, Wu M, et al. Magnetic and folate functionalization enables rapid isolation and enhanced tumor-targeting of cell-derived microvesicles[J]. ACS Nano, 2017, 11(1): 277-290.
[ 6 ] Shan XH, Wang P, Xiong F, et al. Detection of human breast cancer cells using a 2-deoxy-D-glucose-functionalized superparamagnetic iron oxide nanoparticles[J]. Cancer Biomarkers, 2017, 18(4): 367-374.
[ 7 ] Lu M, Cohen MH, Rieves D, et al. FDA report: ferumoxytol for intravenous iron therapy in adult patients with chronic kidney disease[J]. American Journal of Hematology, 2010, 85(5): 315-319.
[ 8 ] Pucci C, Degl'Innocenti A, Belenli Gümü? M, et al. Superparamagnetic iron oxide nanoparticles for magnetic hyperthermia: recent advancements, molecular effects, and future directions in the omics era[J]. Biomaterials Science, 2022.
[ 9 ] Israel LL, Galstyan A, Holler E, et al. Magnetic iron oxide nanoparticles for imaging, targeting and treatment of primary and metastatic tumors of the brain[J]. Journal of Controlled Release, 2020, 320: 45-62.
[ 10 ] Namvar F, Rahman HS, Mohamad R, et al. Cytotoxic effect of magnetic iron oxide nanoparticles synthesized via seaweed aqueous extract [J]. ?International Journal of Nanomedicine, 2014, 9: 2479-88.
[ 11 ] Xie Y, Jiang J, Tang Q, et al. Iron oxide nanoparticles as autophagy intervention agents suppress hepatoma growth by enhancing tumoricidal autophagy [J]. Advanced Science, 2020, 7(16): 1903323.
[ 12 ] Alkahtane AA, Alghamdi HA, Aljasham AT, et al. A possible theranostic approach of chitosan-coated iron oxide nanoparticles against human colorectal carcinoma (HCT-116) cell line[J]. Saudi Journal of Biological Sciences, 2022, 29(1): 154-160.
[ 13 ] Martinez A, Kaittanis C, Rabie MO, et al. FDA-approved ferumoxytol displays anti-leukaemia efficacy against cells with low ferroportin levels[J]. Nature Nanotechnology, 2019, 14(6): 616-622.
[ 14 ] Lee S, Micalizzi D, Truesdell SS, et al. A post-transcriptional program of chemoresistance by AU-rich elements and TTP in quiescent leukemic cells[J]. Genome Biology, 2020, 21(1): 33.
[ 15 ] Wang YL, Ding L, Yao CJ, et al. Toxic effects of metal oxide nanoparticles and their underlying mechanisms[J]. Science China Materials, 2017, 60(2): 93-108.
[ 16 ] Andrade RGD, Veloso SRS, Castanheira EMS. Shape anisotropic iron oxide-based magnetic nanoparticles: synthesis and biomedical applications[J]. International Journal of Molecular Sciences, 2020, 21(7): 2455
[ 17 ] Wei H, Hu Y, Wang J, et al. Superparamagnetic iron oxide nanoparticles: cytotoxicity, metabolism, and cellular behavior in biomedicine applications[J]. International Journal of Nanomedicine, 2021, 16: 6097-6113.

服务与反馈:
文章下载】【加入收藏
提示:您还未登录,请登录!点此登录
 
友情链接  
地址:北京安定门外安贞医院内北京生物医学工程编辑部
电话:010-64456508  传真:010-64456661
电子邮箱:llbl910219@126.com